Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2020_16_1_a2, author = {D. S. Kashchenko and S. A. Kashchenko}, title = {Dynamics of a {System} of {Two} {Simple} {Self-Excited} {Oscillators} with {Delayed} {Step-by-Step} {Feedback}}, journal = {Russian journal of nonlinear dynamics}, pages = {23--43}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2020_16_1_a2/} }
TY - JOUR AU - D. S. Kashchenko AU - S. A. Kashchenko TI - Dynamics of a System of Two Simple Self-Excited Oscillators with Delayed Step-by-Step Feedback JO - Russian journal of nonlinear dynamics PY - 2020 SP - 23 EP - 43 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2020_16_1_a2/ LA - en ID - ND_2020_16_1_a2 ER -
%0 Journal Article %A D. S. Kashchenko %A S. A. Kashchenko %T Dynamics of a System of Two Simple Self-Excited Oscillators with Delayed Step-by-Step Feedback %J Russian journal of nonlinear dynamics %D 2020 %P 23-43 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2020_16_1_a2/ %G en %F ND_2020_16_1_a2
D. S. Kashchenko; S. A. Kashchenko. Dynamics of a System of Two Simple Self-Excited Oscillators with Delayed Step-by-Step Feedback. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 23-43. http://geodesic.mathdoc.fr/item/ND_2020_16_1_a2/
[1] Afraimovich, V. S., Nekorkin, V. I., Osipov, G. V., and Shalfeev, V. D., Stability, Structures and Chaos in Nonlinear Synchronization Networks, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 6, World Sci., River Edge, N.J., 1994, xii+246 pp. | MR | Zbl
[2] Baker, G. L. and Gollub, J. P., Chaotic Dynamics: An Introduction, 2nd ed., Cambridge Univ. Press, Cambridge, 1996, xiv+256 pp. | MR | Zbl
[3] Ali, M. K., “Synchronization of a Chaotic Map in the Presence of Common Noise”, Phys. Rev. E, 55:4 (1997), 4804–4805 | DOI
[4] Fujigaki, H. and Shimada, T., “Phase Synchronization and Nonlinearity Decision in the Network of Chaotic Flows”, Phys. Rev. E, 55:3 (1997), 2426–2433 | DOI
[5] Glass, L., “Synchronization and Rhythmic Processes in Physiology”, Nature, 410 (2001), 277–284 | DOI
[6] He, R. and Vaidya, P. G., “Time Delayed Chaotic Systems and Their Synchronization”, Phys. Rev. E, 59:4 (1999), 4048–4051 | DOI | MR
[7] Kapitaniak, T., Maistrenko, Yu., Stefanski, A., and Brindley, J., “Bifurcations from Locally to Globally Riddled Basins”, Phys. Rev. E, 57:6 (1998), R6253–R6256 | DOI | MR
[8] Kapitaniak, T. and Maistrenko, Yu. L., “Chaos Synchronization and Riddled Basins in Two Coupled One-Dimensional Maps”, Chaos Solitons Fractals, 9:1–2 (1998), 271–282 | DOI | MR | Zbl
[9] Maistrenko, Yu., Popovych, O., and Hasler, M., “On Strong and Weak Chaotic Partial Synchronization”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10:1 (2000), 179–203 | DOI | MR | Zbl
[10] Pikovsky, A. S., Rosenblum, M. G., Osipov, G. V., and Kurths, J., “Phase Synchronization of Chaotic Oscillators by External Driving”, Phys. D, 104:3–4 (1997), 219–238 | DOI | MR | Zbl
[11] Zheng, Zh. G., Hu, G., and Hu, B., “Phase Slips and Phase Synchronization of Coupled Oscillators”, Phys. Rev. Lett., 81:24 (1998), 5318–5321 | DOI
[12] Gjurchinovski, A. and Urumov, V., “Stabilization of Unstable Steady States by Variable-Delay Feedback Control”, Europhys. Lett., 84:4 (2008), 40013, 7 pp. | DOI | MR
[13] Gjurchinovski, A. and Urumov, V., “Variable-Delay Feedback Control of Unstable Steady States in Retarded Time-Delayed Systems”, Phys. Rev. E, 81:1 (2010), 0162209, 12 pp. | DOI | MR
[14] Sugatani, Y., Konishi, K., and Hara, N., “Experimental Verification of Amplitude Death Induced by a Periodic Time-Varying Delay-Connection”, Nonlinear Dyn., 70:3 (2012), 2227–2235 | DOI | MR
[15] Jüngling, T., Gjurchinovski, A., and Urumov, V., “Experemental Time-Delayed Feedback Control with Variable and Distributed Delays”, Phys. Rev. E, 86:4 (2012), 046213, 10 pp. | DOI
[16] Gjurchinovski, A., Jüngling, T., Urumov, V., and Schöll, E., “Delayed Feedback Control of Unstable Steady States with High-Frequency Modulation of the Delay”, Phys. Rev. E, 88:3 (2013), 032912, 14 pp. | DOI | MR
[17] Gjurchinovski, A., Zakharova, A., and Schöll, E., “Amplitude Death in Oscillator Networks with Variable-Delay Coupling”, Phys. Rev. E, 89:3 (2014), 032915, 14 pp. | DOI
[18] Wang, H., Hu, H., and Wang, Z., “Global dynamics of a Duffing oscillator with delayed displacement feedback”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14:8 (2004), 2753–2775 | DOI | MR | Zbl
[19] Pikovsky, A., Rosenblum, M., and Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Univ. Press, New York, 2001, 432 pp. | MR | Zbl
[20] Dmitriev, A. S. and Panas, A. I., Dynamical Chaos: New Information Media for Communication Systems, Fizmatlit, Moscow, 2002, 252 pp. (Russian)
[21] Redmond, B. F., LeBlanc, V. G., and Longtin, A., “Bifurcation Analysis of a Class of First-Order Nonlinear Delay-Differential Equations with Reflectional Symmetry”, Phys. D, 166:3–4 (2002), 131–146 | DOI | MR | Zbl
[22] Balanov, A. G., Janson, N. B., and Schöll, E., “Delayed Feedback Control of Chaos: Bifurcation Analysis”, Phys. Rev. E, 71:1 (2005), 016222, 9 pp. | DOI
[23] Kuznetsov, A. P., Kuznetsov, S. P., and Ryskin, N. M., Nonlinear Oscillations, Fizmatlit, Moscow, 2002, 292 pp. (Russian)
[24] Kuznetsov, S. P., Dynamical Chaos, 2nd ed., Fizmatlit, Moscow, 2006, 356 pp. (Russian)
[25] Zh. Tekh. Fiz., 73:7 (2003), 105–110 (Russian) | DOI
[26] Belykh, I., Jeter, R., and Belykh, V., “Foot Force Models of Crowd Dynamics on a Wobbly Bridge”, Sci. Adv., 3:11 (2017), e1701512, 12 pp. | DOI
[27] Izv. Vyssh. Uchebn. Zaved. Radiofizika, 25:12 (1982), 1410–1428 (Russian) | DOI