Dynamics of a System of Two Simple Self-Excited Oscillators with Delayed Step-by-Step Feedback
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 23-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies the dynamics of a system of two coupled self-excited oscillators of first order with on-off delayed feedback using numerical and analytical methods. Regions of “fast” and “long” synchronization are identified in the parameter space, and the problem of synchronization on an unstable cycle is examined. For small coupling coefficients it is shown by analytical methods that the dynamics of the initial system is determined by the dynamics of a special one-dimensional map.
Keywords: stability, dynamics, irregular oscillations.
Mots-clés : relaxation cycles
@article{ND_2020_16_1_a2,
     author = {D. S. Kashchenko and S. A. Kashchenko},
     title = {Dynamics of a {System} of {Two} {Simple} {Self-Excited} {Oscillators} with {Delayed} {Step-by-Step} {Feedback}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {23--43},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_1_a2/}
}
TY  - JOUR
AU  - D. S. Kashchenko
AU  - S. A. Kashchenko
TI  - Dynamics of a System of Two Simple Self-Excited Oscillators with Delayed Step-by-Step Feedback
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 23
EP  - 43
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_1_a2/
LA  - en
ID  - ND_2020_16_1_a2
ER  - 
%0 Journal Article
%A D. S. Kashchenko
%A S. A. Kashchenko
%T Dynamics of a System of Two Simple Self-Excited Oscillators with Delayed Step-by-Step Feedback
%J Russian journal of nonlinear dynamics
%D 2020
%P 23-43
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_1_a2/
%G en
%F ND_2020_16_1_a2
D. S. Kashchenko; S. A. Kashchenko. Dynamics of a System of Two Simple Self-Excited Oscillators with Delayed Step-by-Step Feedback. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 23-43. http://geodesic.mathdoc.fr/item/ND_2020_16_1_a2/

[1] Afraimovich, V. S., Nekorkin, V. I., Osipov, G. V., and Shalfeev, V. D., Stability, Structures and Chaos in Nonlinear Synchronization Networks, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 6, World Sci., River Edge, N.J., 1994, xii+246 pp. | MR | Zbl

[2] Baker, G. L. and Gollub, J. P., Chaotic Dynamics: An Introduction, 2nd ed., Cambridge Univ. Press, Cambridge, 1996, xiv+256 pp. | MR | Zbl

[3] Ali, M. K., “Synchronization of a Chaotic Map in the Presence of Common Noise”, Phys. Rev. E, 55:4 (1997), 4804–4805 | DOI

[4] Fujigaki, H. and Shimada, T., “Phase Synchronization and Nonlinearity Decision in the Network of Chaotic Flows”, Phys. Rev. E, 55:3 (1997), 2426–2433 | DOI

[5] Glass, L., “Synchronization and Rhythmic Processes in Physiology”, Nature, 410 (2001), 277–284 | DOI

[6] He, R. and Vaidya, P. G., “Time Delayed Chaotic Systems and Their Synchronization”, Phys. Rev. E, 59:4 (1999), 4048–4051 | DOI | MR

[7] Kapitaniak, T., Maistrenko, Yu., Stefanski, A., and Brindley, J., “Bifurcations from Locally to Globally Riddled Basins”, Phys. Rev. E, 57:6 (1998), R6253–R6256 | DOI | MR

[8] Kapitaniak, T. and Maistrenko, Yu. L., “Chaos Synchronization and Riddled Basins in Two Coupled One-Dimensional Maps”, Chaos Solitons Fractals, 9:1–2 (1998), 271–282 | DOI | MR | Zbl

[9] Maistrenko, Yu., Popovych, O., and Hasler, M., “On Strong and Weak Chaotic Partial Synchronization”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10:1 (2000), 179–203 | DOI | MR | Zbl

[10] Pikovsky, A. S., Rosenblum, M. G., Osipov, G. V., and Kurths, J., “Phase Synchronization of Chaotic Oscillators by External Driving”, Phys. D, 104:3–4 (1997), 219–238 | DOI | MR | Zbl

[11] Zheng, Zh. G., Hu, G., and Hu, B., “Phase Slips and Phase Synchronization of Coupled Oscillators”, Phys. Rev. Lett., 81:24 (1998), 5318–5321 | DOI

[12] Gjurchinovski, A. and Urumov, V., “Stabilization of Unstable Steady States by Variable-Delay Feedback Control”, Europhys. Lett., 84:4 (2008), 40013, 7 pp. | DOI | MR

[13] Gjurchinovski, A. and Urumov, V., “Variable-Delay Feedback Control of Unstable Steady States in Retarded Time-Delayed Systems”, Phys. Rev. E, 81:1 (2010), 0162209, 12 pp. | DOI | MR

[14] Sugatani, Y., Konishi, K., and Hara, N., “Experimental Verification of Amplitude Death Induced by a Periodic Time-Varying Delay-Connection”, Nonlinear Dyn., 70:3 (2012), 2227–2235 | DOI | MR

[15] Jüngling, T., Gjurchinovski, A., and Urumov, V., “Experemental Time-Delayed Feedback Control with Variable and Distributed Delays”, Phys. Rev. E, 86:4 (2012), 046213, 10 pp. | DOI

[16] Gjurchinovski, A., Jüngling, T., Urumov, V., and Schöll, E., “Delayed Feedback Control of Unstable Steady States with High-Frequency Modulation of the Delay”, Phys. Rev. E, 88:3 (2013), 032912, 14 pp. | DOI | MR

[17] Gjurchinovski, A., Zakharova, A., and Schöll, E., “Amplitude Death in Oscillator Networks with Variable-Delay Coupling”, Phys. Rev. E, 89:3 (2014), 032915, 14 pp. | DOI

[18] Wang, H., Hu, H., and Wang, Z., “Global dynamics of a Duffing oscillator with delayed displacement feedback”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14:8 (2004), 2753–2775 | DOI | MR | Zbl

[19] Pikovsky, A., Rosenblum, M., and Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Univ. Press, New York, 2001, 432 pp. | MR | Zbl

[20] Dmitriev, A. S. and Panas, A. I., Dynamical Chaos: New Information Media for Communication Systems, Fizmatlit, Moscow, 2002, 252 pp. (Russian)

[21] Redmond, B. F., LeBlanc, V. G., and Longtin, A., “Bifurcation Analysis of a Class of First-Order Nonlinear Delay-Differential Equations with Reflectional Symmetry”, Phys. D, 166:3–4 (2002), 131–146 | DOI | MR | Zbl

[22] Balanov, A. G., Janson, N. B., and Schöll, E., “Delayed Feedback Control of Chaos: Bifurcation Analysis”, Phys. Rev. E, 71:1 (2005), 016222, 9 pp. | DOI

[23] Kuznetsov, A. P., Kuznetsov, S. P., and Ryskin, N. M., Nonlinear Oscillations, Fizmatlit, Moscow, 2002, 292 pp. (Russian)

[24] Kuznetsov, S. P., Dynamical Chaos, 2nd ed., Fizmatlit, Moscow, 2006, 356 pp. (Russian)

[25] Zh. Tekh. Fiz., 73:7 (2003), 105–110 (Russian) | DOI

[26] Belykh, I., Jeter, R., and Belykh, V., “Foot Force Models of Crowd Dynamics on a Wobbly Bridge”, Sci. Adv., 3:11 (2017), e1701512, 12 pp. | DOI

[27] Izv. Vyssh. Uchebn. Zaved. Radiofizika, 25:12 (1982), 1410–1428 (Russian) | DOI