Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2020_16_1_a12, author = {V. V. Sukhanov}, title = {Asymptotic {Behavior} of {Solutions} of a {System} of {KdV} {Type} {Associated} with the {Schr\"odinger} {Operator} with an {Energy-Dependent} {Potential}}, journal = {Russian journal of nonlinear dynamics}, pages = {173--179}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2020_16_1_a12/} }
TY - JOUR AU - V. V. Sukhanov TI - Asymptotic Behavior of Solutions of a System of KdV Type Associated with the Schrödinger Operator with an Energy-Dependent Potential JO - Russian journal of nonlinear dynamics PY - 2020 SP - 173 EP - 179 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2020_16_1_a12/ LA - en ID - ND_2020_16_1_a12 ER -
%0 Journal Article %A V. V. Sukhanov %T Asymptotic Behavior of Solutions of a System of KdV Type Associated with the Schrödinger Operator with an Energy-Dependent Potential %J Russian journal of nonlinear dynamics %D 2020 %P 173-179 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2020_16_1_a12/ %G en %F ND_2020_16_1_a12
V. V. Sukhanov. Asymptotic Behavior of Solutions of a System of KdV Type Associated with the Schrödinger Operator with an Energy-Dependent Potential. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 173-179. http://geodesic.mathdoc.fr/item/ND_2020_16_1_a12/
[1] Alber, M., Luther, G., and Marsden, G., “Energy Dependent Schrödinger Operators and Complex Hamiltonian Systems on Riemann Surfaces”, Nonlinearity, 10:1 (1997), 223–241 | DOI | MR | Zbl
[2] Antonowicz, M. and Fordy, A., “A Family of Completely Integrable Multi-Hamiltonian Systems”, Phys. Lett. A, 122:2 (1987), 95–99 | DOI | MR
[3] Jaulent, M., “On an Inverse Scattering Problem with an Energy-Dependent Potential”, Ann. Inst. H. Poincaré Sect. A (N. S.), 17 (1972), 363–378 | MR
[4] Jaulent, M. and Jean, C., “The Inverse Problem for the One-Dimensional Schrödinger Equation with an Energy-Dependent Potential: 1, 2”, Ann. Inst. H. Poincaré Sect. A (N. S.), 25:2 (1976), 105–137 | MR
[5] Kaup, D., “A Higher-Order Water Wave Equation and the Method of Solving It”, Prog. Theor. Phys., 54:2 (1975), 396–402 | DOI | MR
[6] Laptev, A., Shterenberg, R., and Sukhanov, V., “Inverse Spectral Problems for Schrödinger Operators with Energy Depending Potentials”, Probability and Mathematical Physics, CRM Proc. Lecture Notes, 42, AMS, Providence, R.I., 2007, 341–351 | DOI | MR | Zbl
[7] Sattinger, D. H. and Szmigielski, J., “Energy Dependent Scattering Theory”, Differential Integral Equations, 8:5 (1995), 945–959 | MR | Zbl
[8] Sattinger, D. H. and Szmigielski, J., “A Riemann – Hilbert Problem for an Energy Dependent Schrödinger Operator”, Inverse Problems, 12:6 (1996), 1003–1025 | DOI | MR | Zbl
[9] Segur, H. and Ablowitz, M. J., “Asymptotic Solutions and Conservation Laws for the Nonlinear Schrödinger Equation: 1”, J. Math. Phys., 17:5 (1976), 710–713 | DOI | MR