Asymptotic Behavior of Solutions of a System of KdV Type Associated with the Schrödinger Operator with an Energy-Dependent Potential
Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 173-179.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the asymptotic behavior of the solutions of the Cauchy problem for a nonlinear KdV type system associated with the Schrödinger spectral operator with an energy-dependent potential. Using the set of motion integrals for this system, we determine the amplitude of the asymptotic solution in terms of spectral data for the initial condition of the Cauchy problem.
Keywords: nonlinear KdV type system, asymptotic behavior, energy-dependent potential, motion integrals.
@article{ND_2020_16_1_a12,
     author = {V. V. Sukhanov},
     title = {Asymptotic {Behavior} of {Solutions} of a {System} of {KdV} {Type} {Associated} with the {Schr\"odinger} {Operator} with an {Energy-Dependent} {Potential}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {173--179},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2020_16_1_a12/}
}
TY  - JOUR
AU  - V. V. Sukhanov
TI  - Asymptotic Behavior of Solutions of a System of KdV Type Associated with the Schrödinger Operator with an Energy-Dependent Potential
JO  - Russian journal of nonlinear dynamics
PY  - 2020
SP  - 173
EP  - 179
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2020_16_1_a12/
LA  - en
ID  - ND_2020_16_1_a12
ER  - 
%0 Journal Article
%A V. V. Sukhanov
%T Asymptotic Behavior of Solutions of a System of KdV Type Associated with the Schrödinger Operator with an Energy-Dependent Potential
%J Russian journal of nonlinear dynamics
%D 2020
%P 173-179
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2020_16_1_a12/
%G en
%F ND_2020_16_1_a12
V. V. Sukhanov. Asymptotic Behavior of Solutions of a System of KdV Type Associated with the Schrödinger Operator with an Energy-Dependent Potential. Russian journal of nonlinear dynamics, Tome 16 (2020) no. 1, pp. 173-179. http://geodesic.mathdoc.fr/item/ND_2020_16_1_a12/

[1] Alber, M., Luther, G., and Marsden, G., “Energy Dependent Schrödinger Operators and Complex Hamiltonian Systems on Riemann Surfaces”, Nonlinearity, 10:1 (1997), 223–241 | DOI | MR | Zbl

[2] Antonowicz, M. and Fordy, A., “A Family of Completely Integrable Multi-Hamiltonian Systems”, Phys. Lett. A, 122:2 (1987), 95–99 | DOI | MR

[3] Jaulent, M., “On an Inverse Scattering Problem with an Energy-Dependent Potential”, Ann. Inst. H. Poincaré Sect. A (N. S.), 17 (1972), 363–378 | MR

[4] Jaulent, M. and Jean, C., “The Inverse Problem for the One-Dimensional Schrödinger Equation with an Energy-Dependent Potential: 1, 2”, Ann. Inst. H. Poincaré Sect. A (N. S.), 25:2 (1976), 105–137 | MR

[5] Kaup, D., “A Higher-Order Water Wave Equation and the Method of Solving It”, Prog. Theor. Phys., 54:2 (1975), 396–402 | DOI | MR

[6] Laptev, A., Shterenberg, R., and Sukhanov, V., “Inverse Spectral Problems for Schrödinger Operators with Energy Depending Potentials”, Probability and Mathematical Physics, CRM Proc. Lecture Notes, 42, AMS, Providence, R.I., 2007, 341–351 | DOI | MR | Zbl

[7] Sattinger, D. H. and Szmigielski, J., “Energy Dependent Scattering Theory”, Differential Integral Equations, 8:5 (1995), 945–959 | MR | Zbl

[8] Sattinger, D. H. and Szmigielski, J., “A Riemann – Hilbert Problem for an Energy Dependent Schrödinger Operator”, Inverse Problems, 12:6 (1996), 1003–1025 | DOI | MR | Zbl

[9] Segur, H. and Ablowitz, M. J., “Asymptotic Solutions and Conservation Laws for the Nonlinear Schrödinger Equation: 1”, J. Math. Phys., 17:5 (1976), 710–713 | DOI | MR