The Dynamics of a Spherical Robot of Combined Type by Periodic Control Actions
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 497-504.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents the results of the study of the dynamics of a real spherical robot of combined type in the case of control using small periodic oscillations. The spherical robot is set in motion by controlled change of the position of the center of mass and by generating variable gyrostatic momentum. We demonstrate how to use small periodic controls for stabilization of the spherical robot during motion. The results of numerical simulation are obtained for various initial conditions and control parameters that ensure a change in the position of the center of mass and a variation of gyrostatic momentum. The problem of the motion of a spherical robot of combined type on a surface that performs flat periodic oscillations is also considered. The results of numerical simulation are obtained for different initial conditions, control actions and parameters of oscillations.
Keywords: spherical robot, nonholonomic constraint, small periodic control actions, stabilization.
@article{ND_2019_15_4_a8,
     author = {Yu. L. Karavaev and A. A. Kilin},
     title = {The {Dynamics} of a {Spherical} {Robot} of {Combined} {Type} by {Periodic} {Control} {Actions}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {497--504},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_4_a8/}
}
TY  - JOUR
AU  - Yu. L. Karavaev
AU  - A. A. Kilin
TI  - The Dynamics of a Spherical Robot of Combined Type by Periodic Control Actions
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 497
EP  - 504
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_4_a8/
LA  - en
ID  - ND_2019_15_4_a8
ER  - 
%0 Journal Article
%A Yu. L. Karavaev
%A A. A. Kilin
%T The Dynamics of a Spherical Robot of Combined Type by Periodic Control Actions
%J Russian journal of nonlinear dynamics
%D 2019
%P 497-504
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_4_a8/
%G en
%F ND_2019_15_4_a8
Yu. L. Karavaev; A. A. Kilin. The Dynamics of a Spherical Robot of Combined Type by Periodic Control Actions. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 497-504. http://geodesic.mathdoc.fr/item/ND_2019_15_4_a8/

[1] Bizyaev, I. A., Borisov, A. V., and Kuznetsov, S. P., “Chaplygin Sleigh with Periodically Oscillating Internal Mass”, Europhys. Lett., 119:6 (2017), 60008, 7 pp. | DOI | MR

[2] Bizyaev, I. A., Borisov, A. V., and Mamaev, I. S., “The Chaplygin Sleigh with Parametric Excitation: Chaotic Dynamics and Nonholonomic Acceleration”, Regul. Chaotic Dyn., 22:8 (2017), 955–975 | DOI | MR | Zbl

[3] Dokl. Akad. Nauk, 485:3 (2019), 285–289 (Russian) | DOI

[4] Belichenko, M. V., “On the Stability of Pendulum-type Motions in the Approximate Problem of Dynamics of a Lagrange Top with a Vibrating Suspension Point”, Russian Journal of Nonlinear Dynamics, 14:2 (2018), 243–263 | MR | Zbl

[5] Bardin, B. S. and Savin, A. A., “On the Orbital Stability of Pendulum-Like Oscillations and Rotations of a Symmetric Rigid Body with a Fixed Point”, Regul. Chaotic Dyn., 17:3–4 (2012), 243–257 | DOI | MR | Zbl

[6] Yudovich, V. I., “Vibrodynamics and Vibrogeometry in Mechanical Systems with Constraints”, Uspekhi Mekh., 4:3 (2006), 26–158 (Russian) | MR

[7] Markeyev, A. P., “The Equations of the Approximate Theory of the Motion of a Rigid Body with a Vibrating Suspension Point”, J. Appl. Math. Mech., 75:2 (2011), 132–139 | DOI | MR | Zbl

[8] Kholostova, O. V., “On the Periodic Motion of Lagrange’s Top with Vibrating Suspension”, Mech. Solids, 2002, no. 1, 26–38

[9] Ylikorpi, T., Mobility and Motion Modelling of Pendulum-Driven Ball Decoupled Models Robots: for Steering and Obstacle Crossing, Doctoral Dissertations, School of Electrical Engineering, 2017, 251 pp.

[10] Chase, R. and Pandya, A., “A Review of Active Mechanical Driving Principles of Spherical Robots”, Robotics, 1:1 (2012), 3–23 | DOI

[11] Chen, W.-H., Chen, C.-P., Yu, W.-S., Lin, C.-H., and Lin, P.-C., “Design and Implementation of an Omnidirectional Spherical Robot Omnicron”, IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics (Kaohsiung (Taiwan)), in Proc. 2012 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, 2012, 719–724

[12] Crossley, V. A., A Literature Review on the Design of Spherical Rolling Robots, Preprint, Carnegie Mellon Univ.,Pittsburgh, PA, 2006

[13] Akella, P., O'Reilly, O., and Sreenath, K., “Controlling the Locomotion of Spherical Robots or Why BB-8 Works”, J. Mechanisms Robotics, 11:2 (2019), 024501, 4 pp. | DOI

[14] Tafrishi, S. A., Svinin, M., Esmaeilzadeh, E., and Yamamoto, M., “Design, Modeling, and Motion Analysis of a Novel Fluid Actuated Spherical Rolling Robot”, J. Mechanisms Robotics, 11:4 (2019), 041010, 10 pp. | DOI

[15] Kilin, A. A., Pivovarova, E. N., and Ivanova, T. B., “Spherical Robot of Combined Type: Dynamics and Control”, Regul. Chaotic Dyn., 20:6 (2015), 716–728 | DOI | MR | Zbl

[16] Kilin, A. A. and Karavaev, Yu. L., “Experimental Research of Dynamic of Spherical Robot of Combined Type”, Nelin. Dinam., 11:4 (2015), 721–734 (Russian) | DOI | MR | Zbl

[17] Borisov, A. V., Kilin, A. A., Karavaev, Yu. L., and Klekovkin, A. V., “Stabilization of the Motion of a Spherical Robot Using Feedbacks”, Appl. Math. Model., 69 (2019), 583–592 | DOI | MR

[18] Ivanova, T. B., Kilin, A. A., and Pivovarova, E. N., “Controlled Motion of a Spherical Robot with Feedback: 1”, J. Dyn. Control Syst., 24:3 (2018), 497–510 | DOI | MR | Zbl

[19] Ivanova, T. B., Kilin, A. A., and Pivovarova, E. N., “Controlled Motion of a Spherical Robot with Feedback: 2”, J. Dyn. Control Syst., 25:1 (2019), 1–16 | DOI | MR | Zbl

[20] Borisov, A. V., Mamaev, I. S., and Bizyaev, I. A., “The Jacobi Integral in Nonholonomic Mechanics”, Regul. Chaotic Dyn., 20:3 (2015), 383–400 | DOI | MR | Zbl