Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2019_15_4_a4, author = {A. Bountis and Ya. Kominis and J. Shena and V. Kovanis}, title = {Complex {Dynamics} {Induced} by {Asymmetry} in {Coupled} {Laser} {Systems}}, journal = {Russian journal of nonlinear dynamics}, pages = {429--455}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2019_15_4_a4/} }
TY - JOUR AU - A. Bountis AU - Ya. Kominis AU - J. Shena AU - V. Kovanis TI - Complex Dynamics Induced by Asymmetry in Coupled Laser Systems JO - Russian journal of nonlinear dynamics PY - 2019 SP - 429 EP - 455 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2019_15_4_a4/ LA - en ID - ND_2019_15_4_a4 ER -
A. Bountis; Ya. Kominis; J. Shena; V. Kovanis. Complex Dynamics Induced by Asymmetry in Coupled Laser Systems. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 429-455. http://geodesic.mathdoc.fr/item/ND_2019_15_4_a4/
[1] Johnson, M. T., Siriani, D. F., Peun Tan, M., and Choquette, K. D., “Beam Steering via Resonance Detuning in Coherently Coupled Vertical Cavity Laser Arrays”, Appl. Phys. Lett., 103:20 (2013), 201115, 4 pp. | DOI
[2] Fryslie, S. T. M., Johnson, M. T., and Choquette, K. D., “Coherence Tuning in Optically Coupled Phased Vertical Cavity Laser Arrays”, IEEE J. Quantum Electron., 51:11 (2015), 2600206, 6 pp. | DOI
[3] Wang, S. S. and Winful, H. G., “Dynamics of Phase-Locked Semiconductor Laser Arrays”, Appl. Phys. Lett., 52:21 (1988), 1774–1776 | DOI
[4] Winful, H. G. and Rahman, L., “Synchronized Chaos and Spatiotemporal Chaos in Arrays of Coupled Lasers”, Phys. Rev. Lett., 65:13 (1990), 1575–1578 | DOI
[5] Otsuka, K., “Self-Induced Phase Turbulence and Chaotic Itinerancy in Coupled Laser Systems”, Phys. Rev. Lett., 65:3 (1990), 329–332 | DOI
[6] Winful, H. G., “Instability Threshold for an Array of Coupled Semiconductor Lasers”, Phys. Rev. A, 46:9 (1992), 6093–6094 | DOI
[7] Rogister, F. and Roy, R., “Localized Excitations in Arrays of Synchronized Laser Oscillators”, Phys. Rev. Lett., 98:10 (2007), 104101, 4 pp. | DOI
[8] Soriano, M. C., García-Ojalvo, J., Mirasso, C. R., and Fischer, I., “Complex Photonics: Dynamics and Applications of Delay-Coupled Semiconductors Lasers”, Rev. Mod. Phys., 85:1 (2013), 421–470 | DOI
[9] Shena, J., Hizanidis, J., Kovanis, V., and Tsironis, G. P., “Turbulent Chimeras in Large Semiconductor Laser Arrays”, Sci. Rep., 7 (2017), 42116, 8 pp. | DOI
[10] Erneux, T. and Glorieux, P., Laser Dynamics, Cambridge Univ. Press, Cambridge, 2010, 361 pp.
[11] Valagiannopoulos, C. A. and Kovanis, V., “Judicious Distribution of Laser Emitters to Shape the Desired Far-Field Patterns”, Phys. Rev. A, 95:6 (2017), 063806, 7 pp. | DOI
[12] Yamamoto, Y., Takata, K., and Utsunomiya, S., “Quantum Computing vs. Coherent Computing”, New Generat. Comput., 30:4 (2012), 327–355 | DOI
[13] Utsunomiya, S., Namekata, N., Takata, K., Akamatsu, D., Inoue, S., and Yamamoto, Y., “Binary Phase Oscillation of Two Mutually Coupled Semiconductor Lasers”, Opt. Express, 23:5 (2015), 6029–6040 | DOI
[14] Gao, Z., Fryslie, S. T. M., Thompson, B. J., Carney, P. S., and Choquette, K. D., “Parity-Time Symmetry in Coherently Coupled Vertical Cavity Laser Arrays”, Optica, 4:3 (2017), 323–329 | DOI
[15] Ge, L. and El-Ganainy, R., “Nonlinear Modal Interactions in Parity-Time (PT) Symmetric Lasers”, Sci. Rep., 6 (2016), 24889, 11 pp. | DOI
[16] Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N., and Khajavikhan, M., “Parity-Time-Symmetric Microring Lasers”, Science, 346:6212 (2014), 975–978 | DOI
[17] Hodaei, H., Hassan, A. U., Ren, J., Hayenga, W. E., Miri, M.-A., Christodoulides, D. N., and Khajavikhan, M., “Design Considerations for Single Mode Microring Lasers Using Parity-Time-Symmetry”, IEEE J. Sel. Top. Quantum Electron., 22:5 (2016), 1500307, 7 pp. | DOI
[18] Liertzer, M., Ge, L., Cerjan, A., Stone, A. D., Türeci, H. E., and Rotter, S., “Pump-Induced Exceptional Points in Lasers”, Phys. Rev. Lett., 108:17 (2012), 173901, 5 pp. | DOI
[19] El-Ganainy, R., Makris, K. G., Christodoulides, D. N., and Musslimani, Z. H., “Theory of Coupled Optical PT-Symmetric Structures”, Opt. Lett., 32:17 (2007), 2632–2634 | DOI
[20] Guo, A., Salamo, G. J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G. A., and Christodoulides, D. N., “Observation of $\mathcal{PT}$-Symmetry Breaking in Complex Optical Potentials”, Phys. Rev. Lett., 103:9 (2009), 093902, 4 pp. | DOI
[21] Makris, K. G., El-Ganainy, R., Christodoulides, D. N., and Musslimani, Z. H., “$\mathcal{PT}$-Symmetric Optical Lattices”, Phys. Rev. A, 81:6 (2010), 063807, 10 pp. | DOI
[22] Rüter, Ch. E., Makris, K. G., El-Ganainy, R., Christodoulides, D. N., Segev, M., and Kip, D., “Observation of Parity-Time Symmetry in Optics”, Nat. Phys., 6 (2010), 192–195 | DOI
[23] Kottos, T., “Optical Physics: Broken Symmetry Makes Light Work”, Nat. Phys., 6 (2010), 166–167 | DOI
[24] Konotop, V. V., Yang, J., and Zezyulin, D. A., “Nonlinear Waves in $\mathcal{PT}$-Symmetric Systems”, Rev. Mod. Phys., 88:3 (2016), 035002, 59 pp. | DOI
[25] Zhou, X. and Chong, Y. D., “$\mathcal{PT}$-Symmetry Breaking and Nonlinear Optical Isolation in Coupled Microcavities”, Opt. Express, 24:7 (2016), 6916–6930 | DOI
[26] Ramezani, H., Kottos, T., El-Ganainy, R., and Christodoulides, D. N., “Unidirectional Nonlinear $\mathcal{PT}$-Symmetric Optical Structures”, Phys. Rev. A, 82:4 (2010), 043803, 6 pp. | DOI
[27] Kominis, Y., Bountis, T., and Flach, S., “The Asymmetric Active Coupler: Stable Nonlinear Supermodes and Directed Transport”, Sci. Rep., 6 (2016), 33699, 7 pp. | DOI
[28] Kominis, Y., Bountis, T., and Flach, S., “Stability through Asymmetry: Modulationally Stable Nonlinear Supermodes of Asymmetric Non-Hermitian Optical Couplers”, Phys. Rev. A, 95:6 (2017), 063832, 6 pp. | DOI | MR
[29] Winful, H. G. and Wang, S. S., “Stability of Phase Locking in Coupled Semiconductor Laser Arrays”, Appl. Phys. Lett., 53:20 (1988), 1894–1896 | DOI
[30] Yanchuk, S., Schneider, K. R., and Recke, L., “Dynamics of Two Mutually Coupled Semiconductor Lasers: Instantaneous Coupling Limit”, Phys. Rev. E, 69:5 (2004), 056221, 12 pp. | DOI
[31] Kuske, R. and Erneux, T., “Localized Synchronization of Two Coupled Solid State Lasers”, Opt. Commun., 139:1–3 (1997), 125–131 | DOI
[32] Hohl, A., Gavrielides, A., Erneux, T., and Kovanis, V., “Localized Synchronization in Two Coupled Nonidentical Semiconductor Lasers”, Phys. Rev. Lett., 78:25 (1997), 4745–4748 | DOI
[33] Aronson, D. G., Ermentrout, G. B., and Kopell, N., “Amplitude Response of Coupled Oscillators”, Phys. D, 41:3 (1990), 403–449 | DOI | MR | Zbl
[34] Hecht, E., Optics, 4th ed., Addison-Wesley, San Francisco, 2001, 680 pp.
[35] Gao, Z., Johnson, M. T., and Choquette, K. D., “Rate Equation Analysis and Non-Hermiticity in Coupled Semiconductor Laser Arrays”, J. Appl. Phys., 123:17 (2018), 173102, 11 pp. | DOI
[36] Kominis, Y., Kovanis, V., and Bountis, T., “Spectral Signatures of Exceptional Points and Bifurcations in the Fundamental Active Photonic Dimer”, Phys. Rev. A, 96:5 (2017), 053837, 5 pp. | DOI
[37] Kominis, Y., Kovanis, V., and Bountis, T., “Controllable Asymmetric Phase Locked States of the Fundamental Active Photonic Dimer”, Phys. Rev. A, 96:4 (2017), 043836, 9 pp. | DOI | MR
[38] Papoulis, A. and Pillai, S. U., Probability, Random Variables and Stochastic Processes, 2nd ed., McGraw-Hill, New York, 1984, xvi+576 pp. | MR | Zbl
[39] Kominis, Y., Choquette, K. D., Bountis, A., and Kovanis, V., “Exceptional Points in Two Dissimilar Coupled Diode Lasers”, Appl. Phys. Lett., 113:8 (2018), 081103, 4 pp. | DOI
[40] Kominis, Y., Choquette, K. D., Kovanis, V., and Bountis, A., “Antiresonances and Ultrafast Resonances in Coupled Twin Photonic Oscillator”, IEEE Photonics J., 11:1 (2019), 6 pp. | DOI
[41] Kominis, Y., Kovanis, V., and Bountis, A., Radically Tunable Ultrafast Photonic Oscillators via Differential Pumping, 2019, 8 pp., arXiv: 1911.04179 [physics.optics]
[42] Hodaei, H., Hassan, A. U., Wittek, S., Garcia-Gracia, H., El-Ganainy, R., Christodoulides, D. N., and Khajavikhan, M., “Enhanced Sensitivity at Higher-Order Exceptional Points”, Nature, 548 (2017), 187–191 | DOI
[43] Ren, J., Hodaei, H., Harari, G., Hassan, A. U., Chow, W., Soltani, M., Christodoulides, D., and Khajavikhan, M., “Ultrasensitive Micro-Scale Parity-Time-Symmetric Ring Laser Gyroscope”, Opt. Lett., 42:8 (2017), 1556–1559 | DOI
[44] Liu, Zh.-P., Zhang, J., Özdemir, Ş. K., Peng, B., Jing, H., Lü, X.-Y., Li, Ch.-W., Yang, L., Nori, F., and Liu, Y.-X., “Metrology with $\mathcal{PT}$-Symmetric Cavities: Enhanced Sensitivity near the $\mathcal{PT}$-Phase Transition”, Phys. Rev. Lett., 117:11 (2016), 110802, 6 pp. | DOI
[45] Chen, W., Özdemir, Ş. K., Zhao, G., Wiersig, J., and Yang, L., “Exceptional Points Enhance Sensing in an Optical Microcavity”, Nature, 548 (2017), 192–195 | DOI
[46] Parto, M., Wittek, S., Hodaei, H., Harari, G., Bandres, M. A., Ren, J., Rechtsman, M. C., Segev, M., Christodoulides, D. N., and Khajavikhan, M., “Edge-Mode Lasing in 1D Topological Active Arrays”, Phys. Rev. Lett., 120:11 (2018), 113901, 6 pp. | DOI
[47] Wilson, G. A., DeFreez, R. K., and Winful, H. G., “Modulation of Twin-Emitter Semiconductor Lasers beyond the Frequency of Relaxation Oscillations”, Opt. Commun., 82:3–4 (1991), 293–297 | DOI
[48] Wilson, G. A., DeFreez, R. K., and Winful, H. G., “Modulation of Phased-Array Semiconductor Lasers at K-Band Frequencies”, IEEE J. Quantum Electron., 27:6 (1991), 1696–1704 | DOI
[49] Sames, C., Chibani, H., Hamsen, C., Altin, P. A., Wilk, T., and Rempe, G., “Antiresonance Phase Shift in Strongly Coupled Cavity QED”, Phys. Rev. Lett., 112:4 (2014), 043601, 5 pp. | DOI
[50] Koschny, T., Markoš, P., Smith, D. R., and Soukoulis, C. M., “Resonant and Antiresonant Frequency Dependence of the Effective Parameters of Metamaterials”, Phys. Rev. E, 68:6 (2003), 065602, 4 pp. | DOI
[51] Dilena, M. and Morassi, A., “The Use of Antiresonances for Crack Detection in Beams”, J. Sound Vibration, 276:1–2 (2004), 195–214 | DOI
[52] Usechak, N. G., Grupen, M., Naderi, N., Li, Y., Lester, L. F., and Kovanis, V., “Modulation Effects in Multi-Section Semiconductor Lasers”, Proc. SPIE 7933, Physics and Simulation of Optoelectronic Devices XIX (San Francisco, Calif., 2011), 79331I, 11 pp.
[53] Glasser, L. A., “A Linearized Theory for the Diode Laser in an External Cavity”, IEEE J. Quantum Electron., 16:5 (1980), 525–531 | DOI
[54] Pochet, M., Usechak, N. G., Schmidt, J., and Lester, L. F., “Modulation Response of a Long-Cavity, Gain-Levered Quantum-Dot Semiconductor Laser”, Opt. Express, 22:2 (2014), 1726–1734 | DOI
[55] Zehnlé, V., “Theoretical Model for Coupled Solid-State Lasers”, Phys. Rev. A, 62:3 (2000), 033814, 10 pp. | DOI
[56] Kouznetsov, D., Bisson, J., Shirakawa, A., and Ueda, K., “Limits of Coherent Addition of Lasers: Simple Estimate”, Opt. Rev., 12:6 (2005), 445–447 | DOI
[57] García-Ojalvo, J., Casademont, J., Torrent, M. C., Mirasso, C. R., and Sancho, J. M., “Coherence and Synchronization in Diode-Laser Arrays with Delayed Global Coupling”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9:11 (1999), 2225–2229 | DOI | Zbl
[58] Fryslie, S. T. M., Gao, Z., Dave, H., Thompson, B. J., Lakomy, K., Lin, Sh., Decker, P. J., McElfresh, D. K., Schutt-Ainé, J. E., and Choquette, K. D., “Modulation of Coherently Coupled Phased Photonic Crystal Vertical Cavity Laser Arrays”, IEEE J. Sel. Top. Quantum Electron., 23:6 (2017), 1700409, 9 pp. | DOI
[59] Xun, M., Xu, Ch., Deng, J., Xie, Y., Jiang, G., Wang, J., Xu, K., and Chen, H., “Wide Operation Range In-Phase Coherently Coupled Vertical Cavity Surface Emitting Laser Array Based on Proton Implantation”, Opt. Lett., 40:10 (2015), 2349–2352 | DOI
[60] Philipp, R. and Elisabeth, M., “Spatially Coherent Radiation from an Array of GaAs Lasers”, Appl. Phys. Lett., 26:8 (1975), 475–477 | DOI