On Orbital Stability of Pendulum-like Satellite Rotations at the Boundaries of Stability Regions
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 415-428.

Voir la notice de l'article provenant de la source Math-Net.Ru

The motion of a rigid body satellite about its center of mass is considered. The problem of the orbital stability of planar pendulum-like rotations of the satellite is investigated. It is assumed that the satellite moves in a circular orbit and its geometry of mass corresponds to a plate. In unperturbed motion the minor axis of the inertia ellipsoid lies in the orbital plane. A nonlinear analysis of the orbital stability for previously unexplored values of parameters corresponding to the boundaries of the stability regions is carried out. The study is based on the normal form technique. In the special case of fast rotations a normalization procedure is performed analytically. In the general case the coefficients of normal form are calculated numerically. It is shown that in the case under consideration the planar rotations of the satellite are mainly unstable, and only on one of the boundary curves there is a segment where the formal orbital stability takes place.
Keywords: orbital stability, Hamiltonian system, symplectic map, normal form, combinational resonance, resonance of essential type.
Mots-clés : satellite, rotations
@article{ND_2019_15_4_a3,
     author = {B. S. Bardin and E. A. Chekina},
     title = {On {Orbital} {Stability} of {Pendulum-like} {Satellite} {Rotations} at the {Boundaries} of {Stability} {Regions}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {415--428},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_4_a3/}
}
TY  - JOUR
AU  - B. S. Bardin
AU  - E. A. Chekina
TI  - On Orbital Stability of Pendulum-like Satellite Rotations at the Boundaries of Stability Regions
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 415
EP  - 428
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_4_a3/
LA  - en
ID  - ND_2019_15_4_a3
ER  - 
%0 Journal Article
%A B. S. Bardin
%A E. A. Chekina
%T On Orbital Stability of Pendulum-like Satellite Rotations at the Boundaries of Stability Regions
%J Russian journal of nonlinear dynamics
%D 2019
%P 415-428
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_4_a3/
%G en
%F ND_2019_15_4_a3
B. S. Bardin; E. A. Chekina. On Orbital Stability of Pendulum-like Satellite Rotations at the Boundaries of Stability Regions. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 415-428. http://geodesic.mathdoc.fr/item/ND_2019_15_4_a3/

[1] Beletsky, V. V., Motion of a Satellite about Its Center of Mass in the Gravitational Field, MGU, Moscow, 1975, 308 pp. (Russian)

[2] Kosmicheskie Issledovaniya, 13:3 (1975), 322–336 (Russian) | MR

[3] Prikl. Mat. Mekh., 63:5 (1999), 746–756 (Russian) | DOI | MR | Zbl

[4] Markeev, A. P. and Bardin, B. S., “On the Stability of Planar Oscillations and Rotations of a Satellite in a Circular Orbit”, Celest. Mech. Dynam. Astronom., 85:1 (2003), 51–66 | DOI | MR | Zbl

[5] Kane, T. R. and Shippy, D. J., “Attitude Stability of a Spinning Unsymmetrical Satellite in a Circular Orbit”, J. Astrounaut. Sci., 10:4 (1963), 114–119

[6] Kane, T. R., “Attitude Stability of Earth-Pointing Satellites”, AIAA J., 3:4 (1965), 726–731 | DOI

[7] Meirovitch, L. and Wallace, F., “Attitude Instability Regions of a Spinning Unsymmetrical Satellite in a Circular Orbit”, J. Astrounaut. Sci., 14:3 (1967), 123–133

[8] Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, 12:4 (1977), 46–57 (Russian)

[9] Kholostova, O. V., “Linear Analysis of Stability the Planar Oscillations of a Satellite Being a Plate in a Circular Orbit”, Nelin. Dinam., 1:2 (2005), 181–190 (Russian) | DOI

[10] Izv. Akad. Nauk. Mekh. Tverd. Tela, 2006, no. 4, 63–85 (Russian)

[11] Bardin, B. S. and Checkin, A. M., “About Orbital Stability of Plane Rotations for a Plate Satellite Travelling in a Circular Orbit”, Vestn. MAI, 14:2 (2007), 23–36 (Russian)

[12] Kosmicheskie Issledovaniya, 46:3 (2008), 279–288 (Russian) | DOI

[13] Bardin, B. S. and Chekina, E. A., “On the Stability of Planar Oscillations of a Satellite-Plate in the Case of Essential Type Resonance”, Nelin. Dinam., 13:4 (2017), 465–476 (Russian) | DOI | MR | Zbl

[14] Bardin, B. S. and Chekina, E. A., “On Orbital Stability of Planar Oscillations of a Satellite in a Circular Orbit on the Boundary of the Parametric Resonance”, AIP Conf. Proc., 1959:1 (2018), 040003 | DOI | MR

[15] Bardin, B. S. and Chekina, E. A., “On the Constructive Algorithm for Stability Analysis of an Equilibrium Point of a Periodic Hamiltonian System with Two Degrees of Freedom in the Case of Combinational Resonance”, Regul. Chaotic Dyn., 24:2 (2019), 127–144 | DOI | MR | Zbl

[16] Lyapunov, A. M., The General Problem of the Stability of Motion, Fracis Taylor, London, 1992, x+270 pp. | MR | Zbl

[17] Giacaglia, G. E. O., Perturbation Methods in Non-Linear Systems, Appl. Math. Sci., 8, Springer, New York, 1972, ix, 369 pp. | DOI | MR | Zbl

[18] Markeev, A. P., Libration Points in Celestial Mechanics and Space Dynamics, Nauka, Moscow, 1978, 312 pp. (Russian)

[19] Prikl. Mat. Mekh., 44:6 (1980), 963–970 (Russian) | DOI | MR | Zbl

[20] Prikl. Mat. Mekh., 44:5 (1980), 811–822 (Russian) | DOI | MR | Zbl

[21] Birkhoff, G. D., Dynamical Systems, Amer. Math. Soc. Colloq. Publ., 9, AMS, Providence, R.I., 1966, 305 pp. | MR

[22] Prikl. Mat. Mekh., 69:3 (2005), 355–371 (Russian) | DOI | MR

[23] Bardin, B. S. and Chekina, E. A., “On the Constructive Algorithm for Stability Analysis of an Equilibrium Point of a Periodic Hamiltonian System with Two Degrees of Freedom in the Second-Order Resonance Case”, Regul. Chaotic Dyn., 22:7 (2017), 808–823 | DOI | MR | Zbl

[24] Prikl. Mat. Mekh., 82:4 (2018), 414–426 (Russian) | MR