Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2019_15_4_a3, author = {B. S. Bardin and E. A. Chekina}, title = {On {Orbital} {Stability} of {Pendulum-like} {Satellite} {Rotations} at the {Boundaries} of {Stability} {Regions}}, journal = {Russian journal of nonlinear dynamics}, pages = {415--428}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2019_15_4_a3/} }
TY - JOUR AU - B. S. Bardin AU - E. A. Chekina TI - On Orbital Stability of Pendulum-like Satellite Rotations at the Boundaries of Stability Regions JO - Russian journal of nonlinear dynamics PY - 2019 SP - 415 EP - 428 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2019_15_4_a3/ LA - en ID - ND_2019_15_4_a3 ER -
%0 Journal Article %A B. S. Bardin %A E. A. Chekina %T On Orbital Stability of Pendulum-like Satellite Rotations at the Boundaries of Stability Regions %J Russian journal of nonlinear dynamics %D 2019 %P 415-428 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2019_15_4_a3/ %G en %F ND_2019_15_4_a3
B. S. Bardin; E. A. Chekina. On Orbital Stability of Pendulum-like Satellite Rotations at the Boundaries of Stability Regions. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 415-428. http://geodesic.mathdoc.fr/item/ND_2019_15_4_a3/
[1] Beletsky, V. V., Motion of a Satellite about Its Center of Mass in the Gravitational Field, MGU, Moscow, 1975, 308 pp. (Russian)
[2] Kosmicheskie Issledovaniya, 13:3 (1975), 322–336 (Russian) | MR
[3] Prikl. Mat. Mekh., 63:5 (1999), 746–756 (Russian) | DOI | MR | Zbl
[4] Markeev, A. P. and Bardin, B. S., “On the Stability of Planar Oscillations and Rotations of a Satellite in a Circular Orbit”, Celest. Mech. Dynam. Astronom., 85:1 (2003), 51–66 | DOI | MR | Zbl
[5] Kane, T. R. and Shippy, D. J., “Attitude Stability of a Spinning Unsymmetrical Satellite in a Circular Orbit”, J. Astrounaut. Sci., 10:4 (1963), 114–119
[6] Kane, T. R., “Attitude Stability of Earth-Pointing Satellites”, AIAA J., 3:4 (1965), 726–731 | DOI
[7] Meirovitch, L. and Wallace, F., “Attitude Instability Regions of a Spinning Unsymmetrical Satellite in a Circular Orbit”, J. Astrounaut. Sci., 14:3 (1967), 123–133
[8] Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, 12:4 (1977), 46–57 (Russian)
[9] Kholostova, O. V., “Linear Analysis of Stability the Planar Oscillations of a Satellite Being a Plate in a Circular Orbit”, Nelin. Dinam., 1:2 (2005), 181–190 (Russian) | DOI
[10] Izv. Akad. Nauk. Mekh. Tverd. Tela, 2006, no. 4, 63–85 (Russian)
[11] Bardin, B. S. and Checkin, A. M., “About Orbital Stability of Plane Rotations for a Plate Satellite Travelling in a Circular Orbit”, Vestn. MAI, 14:2 (2007), 23–36 (Russian)
[12] Kosmicheskie Issledovaniya, 46:3 (2008), 279–288 (Russian) | DOI
[13] Bardin, B. S. and Chekina, E. A., “On the Stability of Planar Oscillations of a Satellite-Plate in the Case of Essential Type Resonance”, Nelin. Dinam., 13:4 (2017), 465–476 (Russian) | DOI | MR | Zbl
[14] Bardin, B. S. and Chekina, E. A., “On Orbital Stability of Planar Oscillations of a Satellite in a Circular Orbit on the Boundary of the Parametric Resonance”, AIP Conf. Proc., 1959:1 (2018), 040003 | DOI | MR
[15] Bardin, B. S. and Chekina, E. A., “On the Constructive Algorithm for Stability Analysis of an Equilibrium Point of a Periodic Hamiltonian System with Two Degrees of Freedom in the Case of Combinational Resonance”, Regul. Chaotic Dyn., 24:2 (2019), 127–144 | DOI | MR | Zbl
[16] Lyapunov, A. M., The General Problem of the Stability of Motion, Fracis Taylor, London, 1992, x+270 pp. | MR | Zbl
[17] Giacaglia, G. E. O., Perturbation Methods in Non-Linear Systems, Appl. Math. Sci., 8, Springer, New York, 1972, ix, 369 pp. | DOI | MR | Zbl
[18] Markeev, A. P., Libration Points in Celestial Mechanics and Space Dynamics, Nauka, Moscow, 1978, 312 pp. (Russian)
[19] Prikl. Mat. Mekh., 44:6 (1980), 963–970 (Russian) | DOI | MR | Zbl
[20] Prikl. Mat. Mekh., 44:5 (1980), 811–822 (Russian) | DOI | MR | Zbl
[21] Birkhoff, G. D., Dynamical Systems, Amer. Math. Soc. Colloq. Publ., 9, AMS, Providence, R.I., 1966, 305 pp. | MR
[22] Prikl. Mat. Mekh., 69:3 (2005), 355–371 (Russian) | DOI | MR
[23] Bardin, B. S. and Chekina, E. A., “On the Constructive Algorithm for Stability Analysis of an Equilibrium Point of a Periodic Hamiltonian System with Two Degrees of Freedom in the Second-Order Resonance Case”, Regul. Chaotic Dyn., 22:7 (2017), 808–823 | DOI | MR | Zbl
[24] Prikl. Mat. Mekh., 82:4 (2018), 414–426 (Russian) | MR