Bifurcation Analysis of Periodic Motions Originating from Regular Precessions of a Dynamically Symmetric Satellite
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 593-609

Voir la notice de l'article provenant de la source Math-Net.Ru

We deal with motions of a dynamically symmetric rigid-body satellite about its center of mass in a central Newtonian gravitational field. In this case the equations of motion possess particular solutions representing the so-called regular precessions: cylindrical, conical and hyperboloidal precession. If a regular precession is stable there exist two types of periodic motions in its neighborhood: short-periodic motions with a period close to $2\pi / \omega_2$ and long-periodic motions with a period close to $2 \pi / \omega_1$ where $\omega_2$ and $\omega_1$ are the frequencies of the linearized system ($\omega_2 > \omega_1$). In this work we obtain analytically and numerically families of short-periodic motions arising from regular precessions of a symmetric satellite in a nonresonant case and long-periodic motions arising from hyperboloidal precession in cases of third- and fourth-order resonances. We investigate the bifurcation problem for these families of periodic motions and present the results in the form of bifurcation diagrams and Poincaré maps.
Keywords: Hamiltonian mechanics, satellite dynamics, periodic motions, orbital stability.
Mots-clés : bifurcations
@article{ND_2019_15_4_a19,
     author = {E. A. Sukhov},
     title = {Bifurcation {Analysis} of {Periodic} {Motions} {Originating} from {Regular} {Precessions} of a {Dynamically} {Symmetric} {Satellite}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {593--609},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_4_a19/}
}
TY  - JOUR
AU  - E. A. Sukhov
TI  - Bifurcation Analysis of Periodic Motions Originating from Regular Precessions of a Dynamically Symmetric Satellite
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 593
EP  - 609
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_4_a19/
LA  - en
ID  - ND_2019_15_4_a19
ER  - 
%0 Journal Article
%A E. A. Sukhov
%T Bifurcation Analysis of Periodic Motions Originating from Regular Precessions of a Dynamically Symmetric Satellite
%J Russian journal of nonlinear dynamics
%D 2019
%P 593-609
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_4_a19/
%G en
%F ND_2019_15_4_a19
E. A. Sukhov. Bifurcation Analysis of Periodic Motions Originating from Regular Precessions of a Dynamically Symmetric Satellite. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 593-609. http://geodesic.mathdoc.fr/item/ND_2019_15_4_a19/