Bifurcation Analysis of Periodic Motions Originating from Regular Precessions of a Dynamically Symmetric Satellite
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 593-609
Voir la notice de l'article provenant de la source Math-Net.Ru
We deal with motions of a dynamically symmetric rigid-body satellite about its center of mass in a central Newtonian gravitational field. In this case the equations of motion possess particular solutions representing the so-called regular precessions: cylindrical, conical and hyperboloidal precession. If a regular precession is stable there exist two types of periodic motions in its neighborhood: short-periodic motions with a period close to $2\pi / \omega_2$ and long-periodic motions with a period close to $2 \pi / \omega_1$ where $\omega_2$ and $\omega_1$ are the frequencies of the linearized system ($\omega_2 > \omega_1$).
In this work we obtain analytically and numerically families of short-periodic motions arising from regular precessions of a symmetric satellite in a nonresonant case and long-periodic motions arising from hyperboloidal precession in cases of third- and fourth-order resonances. We investigate the bifurcation problem for these families of periodic motions and present the results in the form of bifurcation diagrams and Poincaré maps.
Keywords:
Hamiltonian mechanics, satellite dynamics, periodic motions, orbital stability.
Mots-clés : bifurcations
Mots-clés : bifurcations
@article{ND_2019_15_4_a19,
author = {E. A. Sukhov},
title = {Bifurcation {Analysis} of {Periodic} {Motions} {Originating} from {Regular} {Precessions} of a {Dynamically} {Symmetric} {Satellite}},
journal = {Russian journal of nonlinear dynamics},
pages = {593--609},
publisher = {mathdoc},
volume = {15},
number = {4},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ND_2019_15_4_a19/}
}
TY - JOUR AU - E. A. Sukhov TI - Bifurcation Analysis of Periodic Motions Originating from Regular Precessions of a Dynamically Symmetric Satellite JO - Russian journal of nonlinear dynamics PY - 2019 SP - 593 EP - 609 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2019_15_4_a19/ LA - en ID - ND_2019_15_4_a19 ER -
%0 Journal Article %A E. A. Sukhov %T Bifurcation Analysis of Periodic Motions Originating from Regular Precessions of a Dynamically Symmetric Satellite %J Russian journal of nonlinear dynamics %D 2019 %P 593-609 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2019_15_4_a19/ %G en %F ND_2019_15_4_a19
E. A. Sukhov. Bifurcation Analysis of Periodic Motions Originating from Regular Precessions of a Dynamically Symmetric Satellite. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 593-609. http://geodesic.mathdoc.fr/item/ND_2019_15_4_a19/