Symmetries and Parameterization of Abnormal Extremals in the Sub-Riemannian Problem with the Growth Vector (2, 3, 5, 8)
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 577-585.

Voir la notice de l'article provenant de la source Math-Net.Ru

The left-invariant sub-Riemannian problem with the growth vector (2, 3, 5, 8) is considered. A two-parameter group of infinitesimal symmetries consisting of rotations and dilations is described. The abnormal geodesic flow is factorized modulo the group of symmetries. A parameterization of the vertical part of abnormal geodesic flow is obtained.
Keywords: sub-Riemannian geometry, abnormal extremals, symmetries.
@article{ND_2019_15_4_a17,
     author = {Yu. L. Sachkov and E. F. Sachkova},
     title = {Symmetries and {Parameterization} of {Abnormal} {Extremals} in the {Sub-Riemannian} {Problem} with the {Growth} {Vector} (2, 3, 5, 8)},
     journal = {Russian journal of nonlinear dynamics},
     pages = {577--585},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_4_a17/}
}
TY  - JOUR
AU  - Yu. L. Sachkov
AU  - E. F. Sachkova
TI  - Symmetries and Parameterization of Abnormal Extremals in the Sub-Riemannian Problem with the Growth Vector (2, 3, 5, 8)
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 577
EP  - 585
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_4_a17/
LA  - en
ID  - ND_2019_15_4_a17
ER  - 
%0 Journal Article
%A Yu. L. Sachkov
%A E. F. Sachkova
%T Symmetries and Parameterization of Abnormal Extremals in the Sub-Riemannian Problem with the Growth Vector (2, 3, 5, 8)
%J Russian journal of nonlinear dynamics
%D 2019
%P 577-585
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_4_a17/
%G en
%F ND_2019_15_4_a17
Yu. L. Sachkov; E. F. Sachkova. Symmetries and Parameterization of Abnormal Extremals in the Sub-Riemannian Problem with the Growth Vector (2, 3, 5, 8). Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 577-585. http://geodesic.mathdoc.fr/item/ND_2019_15_4_a17/

[1] Montgomery, R., A Tour of Subriemannian Geometries, Their Geodesics and Applications, Math. Surveys Monogr., 91, AMS, Providence, R.I., 2002, xx+259 pp. | MR | Zbl

[2] Agrachev, A. A. and Sachkov, Yu. L., Control Theory from the Geometric Viewpoint, Encyclopaedia Math. Sci., 87, Springer, Berlin, 2004 | DOI | MR | Zbl

[3] Differ. Uravn., 2017, no. 3, 362–374 (Russian) | DOI | MR | Zbl

[4] Gauthier, J.-P. and Sachkov, Yu. L., “On the Free Carnot $(2, 3, 5, 8)$ Group”, Program Systems: Theory and Applications, 6:2(25) (2015), 45–61 | DOI

[5] Sachkov, Yu. L. and Sachkova, E. F., “Structure of Abnormal Extremals in Sub-Riemannian Problem with the Growth Vector $(2,3,5,8)$” (to appear)

[6] Mat. Sb., 209:5 (2018), 74–119 (Russian) | DOI | DOI | MR

[7] Sachkov, Yu. L., “Symmetries of Flat Rank Two Distributions and Sub-Riemannian Structures”, Trans. Amer. Math. Soc., 356:2 (2004), 457–494 | DOI | MR | Zbl