Mathematical Modeling of Plasma Dynamics for Processes in Capillary Discharges
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 543-550.

Voir la notice de l'article provenant de la source Math-Net.Ru

A statement of the problem is presented and numerical modeling of plasma-gas-dynamic processes in the capillary discharge plume is performed. In the developed model, plasma dynamic processes in a capillary discharge are determined by the intensity, duration of plasma formation processes in the capillary discharge channel, and thermodynamic parameters in the surrounding gaseous medium. The spatial distribution of temperature, density and pressure, radial and longitudinal velocities of pulsed jets of several capillary discharge channels is presented.
Keywords: capillary discharge, numerical method, plasma dynamics.
@article{ND_2019_15_4_a13,
     author = {V. V. Kuzenov and S. V. Ryzhkov},
     title = {Mathematical {Modeling} of {Plasma} {Dynamics} for {Processes} in {Capillary} {Discharges}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {543--550},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_4_a13/}
}
TY  - JOUR
AU  - V. V. Kuzenov
AU  - S. V. Ryzhkov
TI  - Mathematical Modeling of Plasma Dynamics for Processes in Capillary Discharges
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 543
EP  - 550
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_4_a13/
LA  - en
ID  - ND_2019_15_4_a13
ER  - 
%0 Journal Article
%A V. V. Kuzenov
%A S. V. Ryzhkov
%T Mathematical Modeling of Plasma Dynamics for Processes in Capillary Discharges
%J Russian journal of nonlinear dynamics
%D 2019
%P 543-550
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_4_a13/
%G en
%F ND_2019_15_4_a13
V. V. Kuzenov; S. V. Ryzhkov. Mathematical Modeling of Plasma Dynamics for Processes in Capillary Discharges. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 543-550. http://geodesic.mathdoc.fr/item/ND_2019_15_4_a13/

[1] Pashchina, A. S., Efimov, A. V., Chinnov, V. F. and Ageev, A. G., “Specific features of the radial distributions of plasma parameters in the initial segment of a supersonic jet generated by a pulsed capillary discharge”, Plasma Phys. Rep., 43 (2017), 796–800 | DOI

[2] Poniaev, S. A., Reznikov, B. I., Kurakin, R. O., Popov, P. A., Sedov, A. I., Shustrov, Y. A. and Zhukov, B. G., “Prospects of use of electromagnetic railgun as plasma thruster for spacecrafts”, Acta Astronautica, 150 (2018), 92–96 | DOI

[3] Kuzenov, V. V., “The usage of regular development of mathematical model of processes in the torch of the capillary category”, Physical and chemical kinetics in gas dynamics, 11 (2011) (Russian)

[4] Kuzenov, V. V. and Ryzhkov, S. V., “Calculation of plasma dynamic parameters of the magneto-inertial fusion target with combined exposure”, Phys. Plasmas, 26 (2019), 092704 | DOI

[5] Zh. Vychisl. Mat. Mat. Fiz., 49:10 (2009), 1844–1852 (Russian) | DOI | MR | Zbl

[6] Xu, Zh. and Shu, Ch.-W., “Anti-Diffusive Finite Difference WENO Methods for Shallow Water with Transport of Pollutant”, J. Comput. Math., 24:3 (2006), 239–251 | MR | Zbl

[7] Vorozhtsov, E. V., “Application of Lagrange – Burman Expansions for Numerical Integration of Inviscid Gas Equations”, Vychisl. Metody Programm., 12 (2011), 348–361 (Russian)

[8] Ovsyannikov, L. V., Lectures on the Basics of Gas Dynamics, Nauka, Moscow, 1981, 336 pp. (Russian) | MR

[9] Kuzenov, V. V. and Ryzhkov, S. V., “Approximate Method for Calculating Convective Heat Flux on the Surface of Bodies of Simple Geometric Shapes”, J. Phys. Conf. Ser., 815:1 (2017), 012024, 8 pp. | DOI

[10] Teplofiz. Vys. Temp., 53:2 (2015), 243–249 (Russian) | DOI

[11] Kuzenov, V. V., Ryzhkov, S. V. and Frolko, P. A., “Numerical simulation of the coaxial magneto-plasma accelerator and non-axisymmetric radio frequency discharge”, J. Phys.: Conf. Ser., 830 (2017), 012049 | DOI

[12] Chirkov, A. Yu., Ryzhkov, S. V., Bagryansky P. A., and Anikeev, A. V., “Plasma kinetics models for fusion systems based on the axially-symmetric mirror devices”, Fusion Sci. Technol., 59 (1T) (2011), 39–42 | DOI

[13] Teplofiz. Vys. Temp., 55:2 (2017), 291–316 (Russian) | DOI

[14] Kuzenov, V. V. and Ryzhkov, S. V., “Radiation-Hydrodynamic Modeling of the Contact Boundary of the Plasma Target Placed in an External Magnetic Field”, Prikl. Fiz., 2014, no. 3, 26–30 (Russian)

[15] Ryzhkov, S. V. and Kuzenov, V. V., “Analysis of the ideal gas flow over body of basic geometrical shape”, Int. J. Heat Mass Transf., 132 (2019), 587–592 | DOI

[16] Romadanov, I., Smolyakov, A., Raitses, Y., and et al., “Structure of nonlocal gradient-drift instabilities in Hall E$\times$B discharges”, Physics of Plasmas, 23 (2016), 122111 | DOI

[17] Ryzhkov, S. V. and Kuzenov, V. V., “New Realization Method for Calculating Convective Heat Transfer near the Hypersonic Aircraft Surface”, Z. Angew. Math. Phys., 70:2 (2019), 46, 9 pp. | DOI | MR | Zbl