Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2019_15_4_a13, author = {V. V. Kuzenov and S. V. Ryzhkov}, title = {Mathematical {Modeling} of {Plasma} {Dynamics} for {Processes} in {Capillary} {Discharges}}, journal = {Russian journal of nonlinear dynamics}, pages = {543--550}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2019_15_4_a13/} }
TY - JOUR AU - V. V. Kuzenov AU - S. V. Ryzhkov TI - Mathematical Modeling of Plasma Dynamics for Processes in Capillary Discharges JO - Russian journal of nonlinear dynamics PY - 2019 SP - 543 EP - 550 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2019_15_4_a13/ LA - en ID - ND_2019_15_4_a13 ER -
V. V. Kuzenov; S. V. Ryzhkov. Mathematical Modeling of Plasma Dynamics for Processes in Capillary Discharges. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 4, pp. 543-550. http://geodesic.mathdoc.fr/item/ND_2019_15_4_a13/
[1] Pashchina, A. S., Efimov, A. V., Chinnov, V. F. and Ageev, A. G., “Specific features of the radial distributions of plasma parameters in the initial segment of a supersonic jet generated by a pulsed capillary discharge”, Plasma Phys. Rep., 43 (2017), 796–800 | DOI
[2] Poniaev, S. A., Reznikov, B. I., Kurakin, R. O., Popov, P. A., Sedov, A. I., Shustrov, Y. A. and Zhukov, B. G., “Prospects of use of electromagnetic railgun as plasma thruster for spacecrafts”, Acta Astronautica, 150 (2018), 92–96 | DOI
[3] Kuzenov, V. V., “The usage of regular development of mathematical model of processes in the torch of the capillary category”, Physical and chemical kinetics in gas dynamics, 11 (2011) (Russian)
[4] Kuzenov, V. V. and Ryzhkov, S. V., “Calculation of plasma dynamic parameters of the magneto-inertial fusion target with combined exposure”, Phys. Plasmas, 26 (2019), 092704 | DOI
[5] Zh. Vychisl. Mat. Mat. Fiz., 49:10 (2009), 1844–1852 (Russian) | DOI | MR | Zbl
[6] Xu, Zh. and Shu, Ch.-W., “Anti-Diffusive Finite Difference WENO Methods for Shallow Water with Transport of Pollutant”, J. Comput. Math., 24:3 (2006), 239–251 | MR | Zbl
[7] Vorozhtsov, E. V., “Application of Lagrange – Burman Expansions for Numerical Integration of Inviscid Gas Equations”, Vychisl. Metody Programm., 12 (2011), 348–361 (Russian)
[8] Ovsyannikov, L. V., Lectures on the Basics of Gas Dynamics, Nauka, Moscow, 1981, 336 pp. (Russian) | MR
[9] Kuzenov, V. V. and Ryzhkov, S. V., “Approximate Method for Calculating Convective Heat Flux on the Surface of Bodies of Simple Geometric Shapes”, J. Phys. Conf. Ser., 815:1 (2017), 012024, 8 pp. | DOI
[10] Teplofiz. Vys. Temp., 53:2 (2015), 243–249 (Russian) | DOI
[11] Kuzenov, V. V., Ryzhkov, S. V. and Frolko, P. A., “Numerical simulation of the coaxial magneto-plasma accelerator and non-axisymmetric radio frequency discharge”, J. Phys.: Conf. Ser., 830 (2017), 012049 | DOI
[12] Chirkov, A. Yu., Ryzhkov, S. V., Bagryansky P. A., and Anikeev, A. V., “Plasma kinetics models for fusion systems based on the axially-symmetric mirror devices”, Fusion Sci. Technol., 59 (1T) (2011), 39–42 | DOI
[13] Teplofiz. Vys. Temp., 55:2 (2017), 291–316 (Russian) | DOI
[14] Kuzenov, V. V. and Ryzhkov, S. V., “Radiation-Hydrodynamic Modeling of the Contact Boundary of the Plasma Target Placed in an External Magnetic Field”, Prikl. Fiz., 2014, no. 3, 26–30 (Russian)
[15] Ryzhkov, S. V. and Kuzenov, V. V., “Analysis of the ideal gas flow over body of basic geometrical shape”, Int. J. Heat Mass Transf., 132 (2019), 587–592 | DOI
[16] Romadanov, I., Smolyakov, A., Raitses, Y., and et al., “Structure of nonlocal gradient-drift instabilities in Hall E$\times$B discharges”, Physics of Plasmas, 23 (2016), 122111 | DOI
[17] Ryzhkov, S. V. and Kuzenov, V. V., “New Realization Method for Calculating Convective Heat Transfer near the Hypersonic Aircraft Surface”, Z. Angew. Math. Phys., 70:2 (2019), 46, 9 pp. | DOI | MR | Zbl