Research on the Motion of a Body in a Potential Force Field in the Case of Three Invariant Relations
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 3, pp. 327-342
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of the motion of a rigid body with a fixed point in a potential force field is considered. A new case of three nonlinear invariant relations of the equations of motion is presented. The properties of Euler angles, Rodrigues – Hamilton parameters, and angular velocity hodographs in the Poinsot method are investigated using an integrated approach in the interpretation of body motion.
Keywords:
potential force field, Rodrigues – Hamilton parameters, Poinsot method.
Mots-clés : Euler angles
Mots-clés : Euler angles
@article{ND_2019_15_3_a9,
author = {G. V. Gorr and D. N. Tkachenko and E. K. Shchetinina},
title = {Research on the {Motion} of a {Body} in a {Potential} {Force} {Field} in the {Case} of {Three} {Invariant} {Relations}},
journal = {Russian journal of nonlinear dynamics},
pages = {327--342},
publisher = {mathdoc},
volume = {15},
number = {3},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ND_2019_15_3_a9/}
}
TY - JOUR AU - G. V. Gorr AU - D. N. Tkachenko AU - E. K. Shchetinina TI - Research on the Motion of a Body in a Potential Force Field in the Case of Three Invariant Relations JO - Russian journal of nonlinear dynamics PY - 2019 SP - 327 EP - 342 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2019_15_3_a9/ LA - ru ID - ND_2019_15_3_a9 ER -
%0 Journal Article %A G. V. Gorr %A D. N. Tkachenko %A E. K. Shchetinina %T Research on the Motion of a Body in a Potential Force Field in the Case of Three Invariant Relations %J Russian journal of nonlinear dynamics %D 2019 %P 327-342 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2019_15_3_a9/ %G ru %F ND_2019_15_3_a9
G. V. Gorr; D. N. Tkachenko; E. K. Shchetinina. Research on the Motion of a Body in a Potential Force Field in the Case of Three Invariant Relations. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 3, pp. 327-342. http://geodesic.mathdoc.fr/item/ND_2019_15_3_a9/