Research on the Motion of a Body in a Potential Force Field in the Case of Three Invariant Relations
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 3, pp. 327-342

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the motion of a rigid body with a fixed point in a potential force field is considered. A new case of three nonlinear invariant relations of the equations of motion is presented. The properties of Euler angles, Rodrigues – Hamilton parameters, and angular velocity hodographs in the Poinsot method are investigated using an integrated approach in the interpretation of body motion.
Keywords: potential force field, Rodrigues – Hamilton parameters, Poinsot method.
Mots-clés : Euler angles
@article{ND_2019_15_3_a9,
     author = {G. V. Gorr and D. N. Tkachenko and E. K. Shchetinina},
     title = {Research on the {Motion} of a {Body} in a {Potential} {Force} {Field} in the {Case} of {Three} {Invariant} {Relations}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {327--342},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_3_a9/}
}
TY  - JOUR
AU  - G. V. Gorr
AU  - D. N. Tkachenko
AU  - E. K. Shchetinina
TI  - Research on the Motion of a Body in a Potential Force Field in the Case of Three Invariant Relations
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 327
EP  - 342
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_3_a9/
LA  - ru
ID  - ND_2019_15_3_a9
ER  - 
%0 Journal Article
%A G. V. Gorr
%A D. N. Tkachenko
%A E. K. Shchetinina
%T Research on the Motion of a Body in a Potential Force Field in the Case of Three Invariant Relations
%J Russian journal of nonlinear dynamics
%D 2019
%P 327-342
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_3_a9/
%G ru
%F ND_2019_15_3_a9
G. V. Gorr; D. N. Tkachenko; E. K. Shchetinina. Research on the Motion of a Body in a Potential Force Field in the Case of Three Invariant Relations. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 3, pp. 327-342. http://geodesic.mathdoc.fr/item/ND_2019_15_3_a9/