Precessional Motion of a Rigid Body Acted upon by Three Irreducible Fields
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 3, pp. 285-292.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a quit general problem of motion of an asymmetric rigid body about a fixed point, acted upon by an irreducible skew combination of gravitational, electric and magnetic fields. Two of those three fields are uniform and the third has a more complicated structure. The existence of precessional motions about a nonvertical axis is established. Conditions on the parameters of the system are obtained. An alternative physical interpretation is given in the framework of the problem of motion of a rigid body immersed in an incompressible perfect fluid, acted upon by torques due to two uniform fields.
Keywords: rigid body, precessional motion, three irreducible fields.
@article{ND_2019_15_3_a6,
     author = {A. M. Hussein},
     title = {Precessional {Motion} of a {Rigid} {Body} {Acted} upon by {Three} {Irreducible} {Fields}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {285--292},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_3_a6/}
}
TY  - JOUR
AU  - A. M. Hussein
TI  - Precessional Motion of a Rigid Body Acted upon by Three Irreducible Fields
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 285
EP  - 292
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_3_a6/
LA  - ru
ID  - ND_2019_15_3_a6
ER  - 
%0 Journal Article
%A A. M. Hussein
%T Precessional Motion of a Rigid Body Acted upon by Three Irreducible Fields
%J Russian journal of nonlinear dynamics
%D 2019
%P 285-292
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_3_a6/
%G ru
%F ND_2019_15_3_a6
A. M. Hussein. Precessional Motion of a Rigid Body Acted upon by Three Irreducible Fields. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 3, pp. 285-292. http://geodesic.mathdoc.fr/item/ND_2019_15_3_a6/

[1] Prikl. Mat. Mekh., 56:3 (1992), 532–535 (Russian) | DOI | MR | Zbl

[2] Prikl. Mat. Mekh., 67:4 (2003), 573–587 (Russian) | DOI | MR | Zbl

[3] Grioli, G., “Esistenza e determinazione delle precessioni regolari dinamicamente possibili per un solido pesante asimmetrico”, Ann. Mat. Pura Appl. (4), 26:3–4 (1947), 271–281 | DOI | MR | Zbl

[4] Grioli, G., “On the General Theory of Asymmetric Gyros”, Kreiselprobleme Gyrodynamics: IUTAM Symp. Celerina, Springer, Berlin, 1963, 26–31 | DOI | MR

[5] Gulyaev, M. P., “On a New Particular Solution of the Equations of Motion of a Heavy Rigid Body Having a Fixed Point”, Vestn. Mosk. Univ., 9:3 (1955), 15–21 (Russian) | MR

[6] Hussein, A. M., “On the Motion of a Magnetized Rigid Body”, Acta Mech., 228:11 (2017), 4017–4023 | DOI | MR | Zbl

[7] Prikl. Mat. Mekh., 23 (1959), 681–690 (Russian) | DOI | MR | Zbl

[8] Dokl. AN SSSR, 125:5 (1959), 996–997 (Russian) | MR | Zbl

[9] Kharlamova, E. I., “On a Motion of a Rigid Body Having a Fixed Point”, Mekh. Tverd. Tela, 2 (1970), 35–37 (Russian) | Zbl

[10] Prikl. Mat. Mekh., 64:4 (2000), 551–554 (Russian) | DOI | Zbl

[11] Leimanis, E., The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point, Springer Tracts in Natural Philosophy, 7, Springer, Berlin, 1965, 356 pp. | DOI

[12] Routh, E. J., “On a Theorem of Jacobi in Dynamics”, Quart. J. Pure Appl. Math., 23 (1889), 34–45

[13] Prikl. Mat. Mekh., 32:4 (1968), 763–768 (Russian) | DOI | MR

[14] Prikl. Mat. Mekh., 49:2 (1985), 212–219 (Russian) | DOI

[15] Prikl. Mat. Mekh., 57:5 (1993), 25–34 (Russian) | DOI | MR | Zbl

[16] Yehia, H. M., “On the Motion of a Rigid Body Acted upon by Potential and Gyroscopic Forces: 2. A New Form of the Equations of Motion of a Multiconnected Rigid Body in an Ideal Incompressible Fluid”, J. Mec. Théor. Appl., 5:5 (1986), 755–762 | MR | Zbl

[17] Yehia, H. M., “New Generalizations of the Integrable Problems in Rigid Body Dynamics”, J. Phys. A, 30:20 (1997), 7269–7275 | DOI | MR | Zbl

[18] Yehia, H. M., “New Generalizations of All the Known Integrable Problems in Rigid Body Dynamics”, J. Phys. A, 32:43 (1999), 7565–7580 | DOI | MR | Zbl

[19] Yehia, H. M., “On the Regular Precession of an Asymmetric Rigid Body Acted upon by Uniform Gravity and Magnetic Fields”, EJBAS, 2:3 (2015), 200–205

[20] Yehia, H. M., “Regular Precession of a Rigid Body (Gyrostat) Acted upon by an Irreducible Combination of Three Classical Fields”, J. Egypt. Math. Soc., 25:2 (2017), 216–219 | DOI | MR | Zbl

[21] Zyza, A. V., “Computer Studies of Polynomial Solutions for Gyrostat Dynamics”, Comput. Res. Model., 10:1 (2018), 7–25 (Russian) | DOI