Nonlinear Gradient Flow of a Vertical Vortex Fluid in a Thin Layer
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 3, pp. 271-283.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new exact solution to the Navier – Stokes equations is obtained. This solution describes the inhomogeneous isothermal Poiseuille flow of a viscous incompressible fluid in a horizontal infinite layer. In this exact solution of the Navier – Stokes equations, the velocity and pressure fields are the linear forms of two horizontal (longitudinal) coordinates with coefficients depending on the third (transverse) coordinate. The proposed exact solution is two-dimensional in terms of velocity and coordinates. It is shown that, by rotation transformation, it can be reduced to a solution describing a three-dimensional flow in terms of coordinates and a two-dimensional flow in terms of velocities. The general solution for homogeneous velocity components is polynomials of the second and fifth degrees. Spatial acceleration is a linear function. To solve the boundaryvalue problem, the no-slip condition is specified on the lower solid boundary of the horizontal fluid layer, tangential stresses and constant horizontal (longitudinal) pressure gradients specified on the upper free boundary. It is demonstrated that, for a particular exact solution, up to three points can exist in the fluid layer at which the longitudinal velocity components change direction. It indicates the existence of counterflow zones. The conditions for the existence of the zero points of the velocity components both inside the fluid layer and on its surface under nonzero tangential stresses are written. The results are illustrated by the corresponding figures of the velocity component profiles and streamlines for different numbers of stagnation points. The possibility of the existence of zero points of the specific kinetic energy function is shown. The vorticity vector and tangential stresses arising during the flow of a viscous incompressible fluid layer under given boundary conditions are analyzed. It is shown that the horizontal components of the vorticity vector in the fluid layer can change their sign up to three times. Besides, tangential stresses may change from tensile to compressive, and vice versa. Thus, the above exact solution of the Navier – Stokes equations forms a new mechanism of momentum transfer in a fluid and illustrates the occurrence of vorticity in the horizontal and vertical directions in a nonrotating fluid. The three-component twist vector is induced by an inhomogeneous velocity field at the boundaries of the fluid layer.
Mots-clés : Poiseuille flow, exact solution, stagnation point
Keywords: gradient flow, counterflow, vorticity.
@article{ND_2019_15_3_a5,
     author = {V. V. Privalova and E. Yu. Prosviryakov and M. A. Simonov},
     title = {Nonlinear {Gradient} {Flow} of a {Vertical} {Vortex} {Fluid} in a {Thin} {Layer}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {271--283},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_3_a5/}
}
TY  - JOUR
AU  - V. V. Privalova
AU  - E. Yu. Prosviryakov
AU  - M. A. Simonov
TI  - Nonlinear Gradient Flow of a Vertical Vortex Fluid in a Thin Layer
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 271
EP  - 283
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_3_a5/
LA  - ru
ID  - ND_2019_15_3_a5
ER  - 
%0 Journal Article
%A V. V. Privalova
%A E. Yu. Prosviryakov
%A M. A. Simonov
%T Nonlinear Gradient Flow of a Vertical Vortex Fluid in a Thin Layer
%J Russian journal of nonlinear dynamics
%D 2019
%P 271-283
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_3_a5/
%G ru
%F ND_2019_15_3_a5
V. V. Privalova; E. Yu. Prosviryakov; M. A. Simonov. Nonlinear Gradient Flow of a Vertical Vortex Fluid in a Thin Layer. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 3, pp. 271-283. http://geodesic.mathdoc.fr/item/ND_2019_15_3_a5/

[1] Altukhov, Yu. A. and Pyshnogray, I. G., “On Allowing Slip in Plane-Parallel Flows of Polymeric Liquids”, Mekhanika kompozitsionnykh materialov i konstruktsii, 17:3 (2011), 341–350 (Russian)

[2] Prikl. Mekh. Tekh. Fiz., 48:5 (2007), 71–77 (Russian) | DOI | MR | MR

[3] Teoret. Osnovy Khim. Tekhnolog., 43:5 (2009), 547–566 (Russian) | DOI | MR

[4] Aristov, S. N., Privalova, V. V., and Prosviryakov, E. Yu., “Stationary Nonisothermal Couette Flow. Quadratic Heating of the Upper Boundary of the Fluid Layer”, Nelin. Dinam., 12:2 (2016), 167–178 (Russian) | DOI | MR | Zbl

[5] Aristov, S. N. and Prosviryakov, E. Yu., “On Laminar Flows of Planar Free Convection”, Nelin. Dinam., 9:4 (2013), 651–657 (Russian) | DOI | MR

[6] Aristov, S. N. and Prosviryakov, E. Yu., “Inhomogeneous Couette Flow”, Nelin. Dinam., 10:2 (2014), 177–182 (Russian) | DOI | Zbl

[7] Izv. Vyssh. Uchebn. Zaved. Aviats. Tekh., 2015, no. 4, 50–54 (Russian) | DOI

[8] Izv. Ross. Akad. Nauk. Mekh. Zidk. Gaza, 2016, no. 2, 25–31 (Russian) | DOI | MR | Zbl

[9] Izv. Ross. Akad. Nauk. Mekh. Zidk. Gaza, 2016, no. 5, 3–9 (Russian) | DOI | MR | Zbl

[10] Aristov, S. N. and Skulskiy, O. I., “Viscoelastic Effects of Blood Flow in Nondeformable Capillary”, Ross. Zh. Biomekh., 3:4 (1999), 24–33

[11] Izv. Ross. Akad. Nauk. Mekh. Zidk. Gaza, 2009, no. 1, 103–113 (Russian) | DOI | MR | Zbl

[12] Izv. Ross. Akad. Nauk. Mekh. Zidk. Gaza, 2015, no. 1, 192–198 (Russian) | DOI | MR | Zbl

[13] Sibirsk. Zh. Industr. Matem., 17:3 (2014), 13–25 (Russian) | DOI | MR | Zbl

[14] Blokhin, A. M. and Semenko, R. E., “Stationary Magnetohydrodynamical Flows of Non-Isothermal Polymeric Liquid in the Flat Channel”, Vestn. Yuzhno-Ural. Gos. Univ. Ser. Matem. model. i progr., 11:4 (2018), 41–54 (Russian) | MR | Zbl

[15] Calderer, M. C. and Mukherjee, B., “On Poiseuille Flow of Liquid Crystals”, Liq. Cryst., 22:2 (1997), 121–135 | DOI | MR

[16] Davey, A. and Drazin, P. G., “The Stability of Poiseuille Flow in a Pipe”, J. Fluid Mech., 36:2 (1969), 209–218 | DOI | Zbl

[17] Drazin, P. G. and Riley, N., The Navier – Stokes Equations: A Classification of Flows and Exact Solutions, London Math. Soc. Lecture Note Ser., 334, Cambridge Univ. Press, Cambridge, 2006, 196 pp. | MR

[18] Gavrilenko, S. L., Vasin, R. A., and Shilko, S. V., “A Method for Determining Flow and Rheological Constants of Viscoplastic Biomaterials: P. 1”, Ross. Zh. Biomekh., 6:3 (2002), 92–99 (Russian)

[19] Gol'dshtik, M. A., Shtern, V. N., and Yavorskiy, N. I., Viscous Flows with Paradoxical Properties, Nauka, Novosibirsk, 1989, 336 pp. (Russian) | MR | Zbl

[20] Hartmann, J., Hg-Dynamics: 1. Theory of the Laminar Flow of an Electrically Conductive Liquid in a Homogeneous Magnetic Field, v. 15, Det Kgl. Danske Videnskabernes Selskkab. Math.-fys. Medd., Levin Munksgaard, København, 1937, 28 pp.

[21] Knyazev, D. V. and Kolpakov, I. Yu., “Exact Solutions of the Problem of the flow of a Viscous Fluid in a Cylindrical Region with a Varying Radius”, Nelin. Dinam., 11:1 (2015), 89–97 (Russian) | DOI | Zbl

[22] Korotaev, G. K., Mikhailova, E. N., and Shapiro, N. B., Theory for Equatorial Countercurrents in the World Ocean, Naukova Dumka, Kiev, 1986, 208 pp. (Russian)

[23] Kulikovskii, A. G. and Lyubimov, G. A., Magnetic Hydrodynamics, Logos, Mocsow, 2005, 328 pp. (Russian)

[24] Kuznetsova, Yu. L. and Skul'skiy, O. I., “Shear Banding of the Fluid with a Nonmonotonic Dependence of Flow Stress upon Strain Rate”, Vychisl. Mekh. Sploshn. Sred, 11:1 (2018), 68–78 (Russian)

[25] Kuznetsova, Ju. L., Skul'skiy, O. I., and Pyshnograi, G. V., “Pressure Driven Flow of a Nonlinear Viscoelastic Fluid in a Plane Channel”, Vychisl. Mekh. Sploshn. Sred, 3:2 (2010), 55–69 (Russian)

[26] Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow, Gordon Breach, New York, 1969, 184 pp. | MR | Zbl

[27] Landau, L. D. and Lifshitz, E. M., Course of Theoretical Physics: In 10 Vols., v. 6, Fluid Mechanics, 2nd ed., Butterworth-Heinemann, Oxford, 2003, 552 pp. | MR

[28] Prikl. Mekh. Tekhn. Fiz., 50:4(296) (2009), 28–32 (Russian) | DOI | MR | Zbl

[29] Prikl. Mekh. Tekhn. Fiz., 54:4(320) (2013), 45–54 (Russian) | DOI | Zbl

[30] Prikl. Mekh. Tekhn. Fiz., 58:5(345) (2017), 44–50 (Russian) | DOI | MR | Zbl

[31] Pedley, T. J., The Fluid Mechanics of Large Blood Vessel, Cambridge Univ. Press, Cambridge, 1980, 464 pp.

[32] Poddar, A., Mandal, Sh., Bandopadhyay, A., and Chakraborty, S., “Electrical Switching of a Surfactant Coated Drop in Poiseuille Flow”, J. Fluid Mech., 870 (2019), 27–66 | DOI | MR

[33] Poiseuille, J.-L.-M., “Recherches expérimenteles sur le mouvement des liquides dans les tubes de très petits diamètres”, Comptes rendus hebdomadaires des séances de l'Académie des sciences, 11 (1840), 961–967, 1041–1048

[34] Poiseuille, J.-L.-M., “Recherches expérimenteles sur le mouvement des liquides dans les tubes de très petits diamètres(suite)”, Comptes rendus hebdomadaires des séances de l'Académie des sciences, 12 (1841), 112–115

[35] Privalova, V. V. and Prosviryakov, E. Yu., “Exact Solutions for Three-Dimensional Nonlinear Flows of a Viscous Incompressible Fluid”, AIP Conf. Proc., 2053:1 (2018), 040077, 5 pp. | DOI | MR

[36] Privalova, V. V. and Prosviryakov, E. Yu., “Vortex Flows of a Viscous Incompressible Fluid at Constant Vertical Velocity under Perfect Slip Conditions”, Diagnostics, Resource and Mechanics of Materials and Structures, 2019, no. 2, 57–70 (Russian) | DOI

[37] Pis'ma Zh. Tekh. Fiz., 34:5 (2008), 40–45 (Russian) | DOI | MR

[38] Zh. Tekh. Fiz., 82:5 (2012), 29–35 (Russian) | DOI

[39] Proskurin, A. V. and Sagalakov, A. M., “The Numerical Investigation of the Stability of the Localized Perturbation in Poiseuille Flow”, J. Comput. Technolog., 18:3 (2013), 46–53 (Russian)

[40] Pukhnachev, V. V., “Symmetries in the Navier – Stokes Equations”, Uspekhi Mekh., 4:1 (2006), 6–76 (Russian)

[41] Regirer, S. A., “On the Movement of Fluid in a Tube with a Deforming Wall”, Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza, 3:4 (1968), 202–204 (Russian)

[42] Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza, 1984, no. 5, 89–97 (Russian) | DOI | MR | Zbl

[43] Izv. Ross. Akad. Nauk. Mekh. Zidk. Gaza, 2011, no. 3, 132–144 (Russian) | DOI | MR | Zbl

[44] Shil'ko, S. V., Gavrilenko, S. L., Khizhenok, V. F., Stakan, I. N., and Salivonchik, S. P., “A Method for Defining Flow and Rheological Constants of Viscoplastic Biomaterials: P. 2”, Ross. Zh. Biomekh., 7:2 (2003), 79–84 (Russian)

[45] Differ. Uravn., 34:1 (1998), 50–53 (Russian) | MR | MR

[46] Skul'skii, O. I. and Aristov, S. N., Mechanics of Anomalously Viscous Fluids, R Dynamics, Institute of Computer Science, Izhevsk, 2003, 156 pp. (Russian)

[47] Takagi, D. and Balmforth, N. J., “Peristaltic Pumping of Rigid Objects in an Elastic Tube”, J. Fluid Mech., 672 (2011), 219–244 | DOI | MR | Zbl

[48] Tverier, V. M. and Gladysheva, O. S., “A Biomechanical Model of the Mammary Gland”, Master's J., 2013, no. 2, 240–252 (Russian)

[49] Yin, F. and Fung, Y. C., “Peristaltic Waves in Circular Cylindrical Tubes”, ASME J. Appl. Mech., 36:3 (1969), 579–587 | DOI

[50] Zikanov, O. Yu., “On the Instability of Pipe Poiseuille Flow”, Phys. Fluids, 8:11 (1996), 2923–2932 | DOI | Zbl