A Particle on a Moving Plane with Coulomb Friction
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 3, pp. 343-349.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the motion of a particle on a horizontal vibrating plane with Coulomb friction. It is proved that, when some constant force is added, the system has a periodic solution.
Keywords: classical mechanics, systems with friction, Filippov’s systems, periodic solutions, differential inclusions.
@article{ND_2019_15_3_a10,
     author = {O. Zubelevich},
     title = {A {Particle} on a {Moving} {Plane} with {Coulomb} {Friction}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {343--349},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_3_a10/}
}
TY  - JOUR
AU  - O. Zubelevich
TI  - A Particle on a Moving Plane with Coulomb Friction
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 343
EP  - 349
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_3_a10/
LA  - ru
ID  - ND_2019_15_3_a10
ER  - 
%0 Journal Article
%A O. Zubelevich
%T A Particle on a Moving Plane with Coulomb Friction
%J Russian journal of nonlinear dynamics
%D 2019
%P 343-349
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_3_a10/
%G ru
%F ND_2019_15_3_a10
O. Zubelevich. A Particle on a Moving Plane with Coulomb Friction. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 3, pp. 343-349. http://geodesic.mathdoc.fr/item/ND_2019_15_3_a10/

[1] Benedetti, A., Sornay, P., Dalloz, B., and Nicolas, M., “Angular Particle Sliding Down a Transversally Vibrated Smooth Plane”, Phys. Rev. E, 85:1, 1 (2012), 011307, 8 pp. | DOI

[2] Agarwal, R., Meehan, M., and O'Regan, D., Fixed Point Theory and Applications, Cambridge Tracts in Math., 141, Cambridge Univ. Press, Cambridge, 2001, 170 pp. | MR | Zbl

[3] Blekhman, I. I., Vibrational Mechanics: Nonlinear Dynamic Effects, General Approach, Applications, World Sci., River Edge, N.J., 2000, 536 pp. | MR

[4] Joukovsky, N. E., “Note on a flat sifter screen”, Collected Papers, v. 8, Theory of Elasticity, Railways, Automobiles, ed. A. P. Kotelnikov, Gostekhizdat, Moscow, 1937, 39–46 (Russian)

[5] Filippov, A. F., “Differential Equations with Discontinuous Right-Hand Side”, Mat. Sb. (N. S.), 51(93):1 (1960), 99–128 (Russian) | MR | Zbl

[6] Filippov, A. F., Differential Equations with Discontinuous Righthand Sides, Math. Appl., 18, Springer, Dordrecht, 1988, X, 304 pp. | MR

[7] Schwartz, L., Cours d'analyse, v. 2, Hermann, Paris, 1967, 571 pp. | MR