Capillary Hydraulic Jump in a Viscous Jet
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 3, pp. 221-231

Voir la notice de l'article provenant de la source Math-Net.Ru

Stationary waves in a cylindrical jet of a viscous fluid are considered. It is shown that when the capillary pressure gradient of the term with the third derivative of the jet radius in the axial coordinate is taken into account in the expression, the previously described self-similar solutions of hydrodynamic equations arise. Solutions of the equation of stationary waves propagation are studied analytically. The form of stationary soliton-like solutions is calculated numerically. The results obtained are used to analyze the process of thinning and rupture of jets of viscous liquids.
Keywords: instability, capillary flows, stationary waves.
Mots-clés : viscous jet
@article{ND_2019_15_3_a1,
     author = {A. A. Safronov and A. A. Koroteev and N. I. Filatov and N. A. Safronova},
     title = {Capillary {Hydraulic} {Jump} in a {Viscous} {Jet}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {221--231},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_3_a1/}
}
TY  - JOUR
AU  - A. A. Safronov
AU  - A. A. Koroteev
AU  - N. I. Filatov
AU  - N. A. Safronova
TI  - Capillary Hydraulic Jump in a Viscous Jet
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 221
EP  - 231
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_3_a1/
LA  - ru
ID  - ND_2019_15_3_a1
ER  - 
%0 Journal Article
%A A. A. Safronov
%A A. A. Koroteev
%A N. I. Filatov
%A N. A. Safronova
%T Capillary Hydraulic Jump in a Viscous Jet
%J Russian journal of nonlinear dynamics
%D 2019
%P 221-231
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_3_a1/
%G ru
%F ND_2019_15_3_a1
A. A. Safronov; A. A. Koroteev; N. I. Filatov; N. A. Safronova. Capillary Hydraulic Jump in a Viscous Jet. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 3, pp. 221-231. http://geodesic.mathdoc.fr/item/ND_2019_15_3_a1/