Capillary Hydraulic Jump in a Viscous Jet
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 3, pp. 221-231.

Voir la notice de l'article provenant de la source Math-Net.Ru

Stationary waves in a cylindrical jet of a viscous fluid are considered. It is shown that when the capillary pressure gradient of the term with the third derivative of the jet radius in the axial coordinate is taken into account in the expression, the previously described self-similar solutions of hydrodynamic equations arise. Solutions of the equation of stationary waves propagation are studied analytically. The form of stationary soliton-like solutions is calculated numerically. The results obtained are used to analyze the process of thinning and rupture of jets of viscous liquids.
Keywords: instability, capillary flows, stationary waves.
Mots-clés : viscous jet
@article{ND_2019_15_3_a1,
     author = {A. A. Safronov and A. A. Koroteev and N. I. Filatov and N. A. Safronova},
     title = {Capillary {Hydraulic} {Jump} in a {Viscous} {Jet}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {221--231},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_3_a1/}
}
TY  - JOUR
AU  - A. A. Safronov
AU  - A. A. Koroteev
AU  - N. I. Filatov
AU  - N. A. Safronova
TI  - Capillary Hydraulic Jump in a Viscous Jet
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 221
EP  - 231
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_3_a1/
LA  - ru
ID  - ND_2019_15_3_a1
ER  - 
%0 Journal Article
%A A. A. Safronov
%A A. A. Koroteev
%A N. I. Filatov
%A N. A. Safronova
%T Capillary Hydraulic Jump in a Viscous Jet
%J Russian journal of nonlinear dynamics
%D 2019
%P 221-231
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_3_a1/
%G ru
%F ND_2019_15_3_a1
A. A. Safronov; A. A. Koroteev; N. I. Filatov; N. A. Safronova. Capillary Hydraulic Jump in a Viscous Jet. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 3, pp. 221-231. http://geodesic.mathdoc.fr/item/ND_2019_15_3_a1/

[1] Teplofizika Vysokikh Temperatur, 54:5 (2016), 817–820 (Russian) | DOI | MR

[2] Inzh.-Fiz. Zh., 90:1 (2017), 176–185 (Russian) | DOI | MR

[3] Driessen, T., Jeurissen, R., Wijshoff, H., Toschi, F., and Lohse, D., “Stability of Viscous Long Liquid Filaments”, Phys. Fluids, 25:6 (2013), 062109, 7 pp. | DOI | MR

[4] Tjahjadi, M., Ottino, J. M., and Stone, H. A., “Satellite and Subsatellite Formation in Capillary Breakup”, J. Fluid Mech., 243 (1992), 297–317 | DOI

[5] Grigoriev, A. L., Koroteev, A. A., Safronov, A. A., and Filatov, N. I., “Self-Similar Patterns of Subsatellites Formation at the Capillary Breakup of Viscous Jets”, Thermophys. Aeromech., 25:4 (2018), 575–585 | DOI

[6] van der Bos, J. A., van der Meulen, M. P., Driessen, T. W., van den Berg, M., Reinten, H., Wijshoff, M. A., and Lohse, D., “Velocity Profile inside Piezoacoustic Inkjet Droplets in Flight: Comparison between Experimental and Numerical Simulation”, Phys. Rev. Appl., 1:1 (2014), 014004, 9 pp. | DOI

[7] Eggers, J. and Todd, F. D., “Drop Formation in a One-Dimensional Approximation of the Navier – Stokes Equation”, J. Fluid Mech., 262 (1997), 205–221 | DOI | MR

[8] Eggers, J. and Villermaux, E., “Physics of Liquid Jets”, Rep. Prog. Phys., 71:3 (2008), 036601, 79 pp. | DOI

[9] Eggers, J., “Drop Formation: An Overview”, Z. Angew. Math. Mech., 85:6 (2005), 400–410 | DOI | MR | Zbl

[10] Brenner, M. P., Shi, X. D., and Nagel, S. R., “Iterated Instabilities during Droplet Fission”, Phys. Rev. Lett., 73:25 (1994), 3391–3394 | DOI

[11] Brenner, M. P., “Stability of a Viscous Pinching Thread”, Phys. Fluids, 24:7 (2012), 072103, 11 pp. | DOI

[12] Strutt, J. W. (3rd Baron Rayleigh), The Theory of Sound, v. 2, 2nd ed., Dover, New York, 1945, 504 pp. | MR | Zbl

[13] Nayfeh, A. H., “Nonlinear Stability of a Liquid Jet”, Phys. Fluids, 13:4 (1970), 841–847 | DOI | Zbl

[14] Wang, F., Tschukin, O., Marques, G. C., Selzer, M., Aghassi-Hagmann, J., and Nestler, B., Breakup of Liquid Jets and the Formation of Satellite and Subsatellite Droplets, 2018, arXiv: 1805.06818 [physics.flu-dyn]

[15] Bazilevskii, A. B. and Rozhkov, A. N., “Dynamics of the Capillary Breakup of a Bridge in an Elastic Fluid”, Fluid Dyn., 50:6 (2015), 800–811 | DOI | MR

[16] Argentina, M., Cohen, A., Bouret, Y., Fraysse, N., and Raufaste, C., “One-Dimensional Capillary Jumps”, J. Fluid Mech., 765 (2015), 1–16 | DOI | MR

[17] Bhagat, R. K., Jha, N. K., Linden, P. F., and Wilson, D., I., “On the Origin of the Circular Hydraulic Jump in a Thin Liquid Film”, J. Fluid Mech., 851 (2018), R5, 11 | DOI | MR | Zbl