Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2019_15_2_a7, author = {A. D. Morozov and K. E. Morozov}, title = {Global {Dynamics} of {Systems} {Close} to {Hamiltonian} {Ones} {Under} {Nonconservative} {Quasi-periodic} {Perturbation}}, journal = {Russian journal of nonlinear dynamics}, pages = {187--198}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2019_15_2_a7/} }
TY - JOUR AU - A. D. Morozov AU - K. E. Morozov TI - Global Dynamics of Systems Close to Hamiltonian Ones Under Nonconservative Quasi-periodic Perturbation JO - Russian journal of nonlinear dynamics PY - 2019 SP - 187 EP - 198 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2019_15_2_a7/ LA - ru ID - ND_2019_15_2_a7 ER -
%0 Journal Article %A A. D. Morozov %A K. E. Morozov %T Global Dynamics of Systems Close to Hamiltonian Ones Under Nonconservative Quasi-periodic Perturbation %J Russian journal of nonlinear dynamics %D 2019 %P 187-198 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2019_15_2_a7/ %G ru %F ND_2019_15_2_a7
A. D. Morozov; K. E. Morozov. Global Dynamics of Systems Close to Hamiltonian Ones Under Nonconservative Quasi-periodic Perturbation. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 2, pp. 187-198. http://geodesic.mathdoc.fr/item/ND_2019_15_2_a7/
[1] Jing, Zh., Huang, J., and Deng, J., “Complex Dynamics in Three-Well Duffing System with Two External Forcings”, Chaos Solitons Fractals, 33:3 (2007), 795–812 | DOI | MR | Zbl
[2] Liu, B. and You, J., “Quasiperiodic Solutions of Duffing's Equations”, Nonlinear Anal., 33:6 (1998), 645–655 | DOI | MR | Zbl
[3] Jing, Zh., Yang, Zh., and Jiang, T., “Complex Dynamics in Duffing – van der Pol Equation”, Chaos Solitons Fractals, 27:3 (2006), 722–747 | DOI | MR | Zbl
[4] Mel'nikov, V. K., “On the Stability of a Center for Time-Periodic Perturbations”, Tr. Mosk. Mat. Obs., 12 (1963), 3–52 (Russian) | MR | Zbl
[5] Sanders, J. A., “Melnikov's Method and Averaging”, Celestial Mech., 28:1–2 (1982), 171–181 | DOI | MR | Zbl
[6] Wiggins, S., Chaotic Transport in Dynamical Systems, Interdiscip. Appl. Math., 2, Springer, New York, 1992, XIII, 301 pp. | DOI | MR | Zbl
[7] Zh. Tekh. Fiz., 67:10 (1997), 1–7 (Russian) | DOI
[8] Yagasaki, K., “Second-Order Averaging and Chaos in Quasiperiodically Forced Weakly Nonlinear Oscillators”, Phys. D, 44:3 (1990), 445–458 | DOI | MR | Zbl
[9] Belogortsev, A. B., “Quasiperiodic Resonance and Bifurcations of Tori in the Weakly Nonlinear Duffing Oscillator”, Phys. D, 59:4 (1992), 417–429 | DOI | MR | Zbl
[10] Jing, Zh. and Wang, R., “Complex Dynamics in Duffing System with Two External Forcings”, Chaos Solitons Fractals, 23:2 (2005), 399–411 | DOI | MR | Zbl
[11] Morozov, A. D., Quasi-Conservative Systems: Cycles, Resonances and Chaos, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 30, World Sci., River Edge, N.J., 1999, 340 pp. | MR
[12] Bogoliubov, N. N. and Mitropolsky, Yu. A., Asymptotic Methods in the Theory of Non-Linear Oscillations, Gordon Breach, New York, 1961 | MR
[13] Mitropolsky, Yu. A. and Lykova, O. B., Integrated Manifolds in the Nonlinear Mechanics, Nauka, Moscow, 1973, 512 pp. (Russian) | MR
[14] Differ. Uravn., 53:12 (2017), 1607–1615 (Russian) | DOI | MR | Zbl
[15] Morozov, A. D., Resonances, Cycles and Chaos in Quasi-Conservative Systems, R Dynamics, Institute of Computer Science, Moscow – Izhevsk, 2005 (Russian) | MR
[16] Morozov, A. D., “On the Structure of Resonance Zones and Chaos in Nonlinear Parametric Systems”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 4:2 (1994), 401–410 | DOI | MR | Zbl
[17] Prikl. Mat. Mekh., 58:3 (1994), 41–51 (Russian) | DOI | MR | Zbl
[18] Morozov, A. D. and Morozov, K. E., “On Synchronization of Quasiperiodic Oscillations”, Russian J. Nonlinear Dyn., 14:3 (2018), 367–376 | MR
[19] Hale, J. K., Oscillations in Nonlinear System, McGraw-Hill, New York, 1963, 192 pp. | MR
[20] Morozov, A.D. and Dragunov,T.N., “On Quasi-periodic Perturbations of Duffing Equation”, Interdiscip. J. Discontin. Nonlinearity Complex, 5:4 (2016), 377–386 | DOI
[21] Mat. Sb. (N. S.), 74(116):3 (1967), 378–397 (Russian) | DOI | MR