On the Structure of Zonal Spherical Functions on Symmetric Spaces of Negative Curvature of Type AII
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 2, pp. 179-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

A purely algebraic method is proposed for the construction of zonal spherical functions (ZSF) on symmetric spaces $X_{n}^{-}=SL(n,Q)/Sp(n)$ and eigenfunctions of the hyperbolic Sutherland operator connected with them. Examples of the explicit calculations of the coefficients determining the structure of ZSF are given.
Keywords: hyperbolic Sutherland operator, zonal spherical functions.
Mots-clés : permutation group
@article{ND_2019_15_2_a6,
     author = {V. I. Inozemtsev},
     title = {On the {Structure} of {Zonal} {Spherical} {Functions} on {Symmetric} {Spaces} of {Negative} {Curvature} of {Type} {AII}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {179--186},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_2_a6/}
}
TY  - JOUR
AU  - V. I. Inozemtsev
TI  - On the Structure of Zonal Spherical Functions on Symmetric Spaces of Negative Curvature of Type AII
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 179
EP  - 186
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_2_a6/
LA  - ru
ID  - ND_2019_15_2_a6
ER  - 
%0 Journal Article
%A V. I. Inozemtsev
%T On the Structure of Zonal Spherical Functions on Symmetric Spaces of Negative Curvature of Type AII
%J Russian journal of nonlinear dynamics
%D 2019
%P 179-186
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_2_a6/
%G ru
%F ND_2019_15_2_a6
V. I. Inozemtsev. On the Structure of Zonal Spherical Functions on Symmetric Spaces of Negative Curvature of Type AII. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 2, pp. 179-186. http://geodesic.mathdoc.fr/item/ND_2019_15_2_a6/

[1] Helgason, S., Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962, 485 pp. | MR | Zbl

[2] Vilenkin, N. Ja., Special Functions and the Theory of Group Representations, Nauka, Moscow, 1965, 613 pp. (Russian) | MR | Zbl

[3] Vretare, L., “Formulas for Elementary Spherical Functions and Generalized Jacobi Polynomials”, SIAM J. Math. Anal., 15 (1984), 805–834 | DOI | MR

[4] Anderson, A. and Camporesi, R., “Intertwining Operators for Solving Differential Equations with Applications to Symmetric Spaces”, Commun. Math. Phys., 130:1 (1990), 61–82 | DOI | MR | Zbl

[5] Sekiguchi, J., “Zonal Spherical Functions on Some Symmetric Spaces”, Publ. RIMS. Kyoto Univ., 12, Suppl. (1977), 455–464 | DOI | MR

[6] Gindikin, S. G. and Karpelevich, F. I., “Plancherel Measure for Symmetric Riemannian Spaces of Non-Positive Curvature”, Dokl. Akad. Nauk SSSR, 145:2 (1962), 252–255 (Russian) | MR

[7] Olshanetsky, M. A. and Perelomov, A. M., “Quantum Integrable Systems Related to Lie Algebras”, Phys. Rep., 94:6 (1983), 313–404 | DOI | MR

[8] Chalykh, O. A. and Veselov, A. P., “Commutative Rings of Partial Differential Operators and Lie Algebras”, Comm. Math. Phys., 126:3 (1990), 597–611 | DOI | MR | Zbl

[9] Inozemtsev, V. I., Integrable Heisenberg – Dirac Chains with Variable Range Exchange: Integrable Quantum Spin Chains, Lambert, Saarbrücken, 2013