Mots-clés : permutation group
@article{ND_2019_15_2_a6,
author = {V. I. Inozemtsev},
title = {On the {Structure} of {Zonal} {Spherical} {Functions} on {Symmetric} {Spaces} of {Negative} {Curvature} of {Type} {AII}},
journal = {Russian journal of nonlinear dynamics},
pages = {179--186},
year = {2019},
volume = {15},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ND_2019_15_2_a6/}
}
TY - JOUR AU - V. I. Inozemtsev TI - On the Structure of Zonal Spherical Functions on Symmetric Spaces of Negative Curvature of Type AII JO - Russian journal of nonlinear dynamics PY - 2019 SP - 179 EP - 186 VL - 15 IS - 2 UR - http://geodesic.mathdoc.fr/item/ND_2019_15_2_a6/ LA - ru ID - ND_2019_15_2_a6 ER -
V. I. Inozemtsev. On the Structure of Zonal Spherical Functions on Symmetric Spaces of Negative Curvature of Type AII. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 2, pp. 179-186. http://geodesic.mathdoc.fr/item/ND_2019_15_2_a6/
[1] Helgason, S., Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962, 485 pp. | MR | Zbl
[2] Vilenkin, N. Ja., Special Functions and the Theory of Group Representations, Nauka, Moscow, 1965, 613 pp. (Russian) | MR | Zbl
[3] Vretare, L., “Formulas for Elementary Spherical Functions and Generalized Jacobi Polynomials”, SIAM J. Math. Anal., 15 (1984), 805–834 | DOI | MR
[4] Anderson, A. and Camporesi, R., “Intertwining Operators for Solving Differential Equations with Applications to Symmetric Spaces”, Commun. Math. Phys., 130:1 (1990), 61–82 | DOI | MR | Zbl
[5] Sekiguchi, J., “Zonal Spherical Functions on Some Symmetric Spaces”, Publ. RIMS. Kyoto Univ., 12, Suppl. (1977), 455–464 | DOI | MR
[6] Gindikin, S. G. and Karpelevich, F. I., “Plancherel Measure for Symmetric Riemannian Spaces of Non-Positive Curvature”, Dokl. Akad. Nauk SSSR, 145:2 (1962), 252–255 (Russian) | MR
[7] Olshanetsky, M. A. and Perelomov, A. M., “Quantum Integrable Systems Related to Lie Algebras”, Phys. Rep., 94:6 (1983), 313–404 | DOI | MR
[8] Chalykh, O. A. and Veselov, A. P., “Commutative Rings of Partial Differential Operators and Lie Algebras”, Comm. Math. Phys., 126:3 (1990), 597–611 | DOI | MR | Zbl
[9] Inozemtsev, V. I., Integrable Heisenberg – Dirac Chains with Variable Range Exchange: Integrable Quantum Spin Chains, Lambert, Saarbrücken, 2013