Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2019_15_2_a5, author = {T. B. Ivanova}, title = {The {Rolling} of a {Homogeneous} {Ball} with {Slipping} on a {Horizontal} {Rotating} {Plane}}, journal = {Russian journal of nonlinear dynamics}, pages = {171--178}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2019_15_2_a5/} }
T. B. Ivanova. The Rolling of a Homogeneous Ball with Slipping on a Horizontal Rotating Plane. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 2, pp. 171-178. http://geodesic.mathdoc.fr/item/ND_2019_15_2_a5/
[1] Earnshaw, S., Dynamics, or An Elementary Treatise on Motion, 3rd ed., Deighton, Cambridge, 1844
[2] Borisov, A. V., Ivanova, T. B., Karavaev, Yu. L., and Mamaev, I. S., “Theoretical and Experimental Investigations of the Rolling of a Ball on a Rotating Plane (Turntable)”, Eur. J. Phys., 39:6 (2018), 065001, 13 pp. | DOI
[3] Prikl. Mat. Mekh., 47:1 (1983), 43–47 (Russian) | DOI | MR
[4] Prikl. Mat. Mekh., 28:3 (1964), 513–515 (Russian) | DOI | MR | MR | Zbl
[5] Kolesnikov, S. L., “The Problem of a Homogeneous Heavy Ball Rolling with Slipping in a Vertical Cylinder”, Collection of scientific and Methodical Papers on Theoretical Mechanics, v. 17, Vysshaya Shkola, Moscow, 1986, 118–121 (Russian)
[6] Karapetyan, A. V. and Rumyantsev, V. V., Stability of Conservative and Dissipative Systems, Itogi Nauki Tekh. Ser. Obshch. Mekh., 6, VINITI, Moscow, 1983, 132 pp. (Russian) | MR
[7] Eldering, J., “Realizing Nonholonomic Dynamics as Limit of Friction Forces”, Regul. Chaotic Dyn., 21:4 (2016), 390–409 | DOI | MR | Zbl
[8] Borisov, A. V. and Mamaev, I. S., “Conservation Laws, Hierarchy of Dynamics and Explicit Integration of Nonholonomic Systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490 | DOI | MR | Zbl
[9] Dokl. Akad. Nauk, 474:5 (2017), 558–562 (Russian) | DOI | MR
[10] Gersten, J., Soodak, H., and Tiersten, M. S., “Ball Moving on Stationary or Rotating Horizontal Surface”, Am. J. Phys., 60:1 (1992), 43–47 Kyeong Min Kim, Donggeon Oh, Junghwan Lee, Young-Gui Yoon, Chan-Oung Park. Dynamics of Cylindrical and Spherical Objects on a Turntable HAL Id: $hal-01761333$, version 1, \textsf{https://hal.archives-ouvertes.fr/hal-01761333} (2018). | DOI
[11] Kyeong Min Kim, Donggeon Oh, Junghwan Lee, Young-Gui Yoon, Chan-Oung Park, Dynamics of Cylindrical and Spherical Objects on a Turntable, HAL Id: $hal-01761333$, version 1 , 2018 https://hal.archives-ouvertes.fr/hal-01761333