The Rolling of a Homogeneous Ball with Slipping on a Horizontal Rotating Plane
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 2, pp. 171-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the rolling of a homogeneous ball with slipping on a uniformly rotating horizontal plane. We take into account viscous friction forces arising when there is slipping at the contact point. It is shown that, as the coefficient of viscosity tends to infinity, the solution of the generalized problem on each fixed time interval tends to a solution of the corresponding nonholonomic problem.
Keywords: rotating surface, turntable, nonholonomic constraint, rolling ball, sliding
Mots-clés : viscous friction.
@article{ND_2019_15_2_a5,
     author = {T. B. Ivanova},
     title = {The {Rolling} of a {Homogeneous} {Ball} with {Slipping} on a {Horizontal} {Rotating} {Plane}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {171--178},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_2_a5/}
}
TY  - JOUR
AU  - T. B. Ivanova
TI  - The Rolling of a Homogeneous Ball with Slipping on a Horizontal Rotating Plane
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 171
EP  - 178
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_2_a5/
LA  - ru
ID  - ND_2019_15_2_a5
ER  - 
%0 Journal Article
%A T. B. Ivanova
%T The Rolling of a Homogeneous Ball with Slipping on a Horizontal Rotating Plane
%J Russian journal of nonlinear dynamics
%D 2019
%P 171-178
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_2_a5/
%G ru
%F ND_2019_15_2_a5
T. B. Ivanova. The Rolling of a Homogeneous Ball with Slipping on a Horizontal Rotating Plane. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 2, pp. 171-178. http://geodesic.mathdoc.fr/item/ND_2019_15_2_a5/

[1] Earnshaw, S., Dynamics, or An Elementary Treatise on Motion, 3rd ed., Deighton, Cambridge, 1844

[2] Borisov, A. V., Ivanova, T. B., Karavaev, Yu. L., and Mamaev, I. S., “Theoretical and Experimental Investigations of the Rolling of a Ball on a Rotating Plane (Turntable)”, Eur. J. Phys., 39:6 (2018), 065001, 13 pp. | DOI

[3] Prikl. Mat. Mekh., 47:1 (1983), 43–47 (Russian) | DOI | MR

[4] Prikl. Mat. Mekh., 28:3 (1964), 513–515 (Russian) | DOI | MR | MR | Zbl

[5] Kolesnikov, S. L., “The Problem of a Homogeneous Heavy Ball Rolling with Slipping in a Vertical Cylinder”, Collection of scientific and Methodical Papers on Theoretical Mechanics, v. 17, Vysshaya Shkola, Moscow, 1986, 118–121 (Russian)

[6] Karapetyan, A. V. and Rumyantsev, V. V., Stability of Conservative and Dissipative Systems, Itogi Nauki Tekh. Ser. Obshch. Mekh., 6, VINITI, Moscow, 1983, 132 pp. (Russian) | MR

[7] Eldering, J., “Realizing Nonholonomic Dynamics as Limit of Friction Forces”, Regul. Chaotic Dyn., 21:4 (2016), 390–409 | DOI | MR | Zbl

[8] Borisov, A. V. and Mamaev, I. S., “Conservation Laws, Hierarchy of Dynamics and Explicit Integration of Nonholonomic Systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490 | DOI | MR | Zbl

[9] Dokl. Akad. Nauk, 474:5 (2017), 558–562 (Russian) | DOI | MR

[10] Gersten, J., Soodak, H., and Tiersten, M. S., “Ball Moving on Stationary or Rotating Horizontal Surface”, Am. J. Phys., 60:1 (1992), 43–47 Kyeong Min Kim, Donggeon Oh, Junghwan Lee, Young-Gui Yoon, Chan-Oung Park. Dynamics of Cylindrical and Spherical Objects on a Turntable HAL Id: $hal-01761333$, version 1, \textsf{https://hal.archives-ouvertes.fr/hal-01761333} (2018). | DOI

[11] Kyeong Min Kim, Donggeon Oh, Junghwan Lee, Young-Gui Yoon, Chan-Oung Park, Dynamics of Cylindrical and Spherical Objects on a Turntable, HAL Id: $hal-01761333$, version 1 , 2018 https://hal.archives-ouvertes.fr/hal-01761333