Nonlinear Regenerative Dynamics Analysis of the Multicutter Turning Process
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 2, pp. 145-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work presents nonlinear dynamics modeling results for an investigation of continuous cut stability in multicutter turning. The dynamics modeling of the multicutter turning process is carried out through the complete mathematical model of nonlinear dynamics. The dynamic stability of the system is estimated through the possibility of self-oscillations generation (Poincaré – Andronov –Hopf bifurcation) of the cutters with lobes of the stability diagram. This paper analyzes the relationship of the axial offset and the cutter angular position for compensation of the system parameters. As a result, the analysis of the influence of the technological system parameters on the chip thickness, their cross-sectional shape and the stability of the system is carried out.
Keywords: multicutter turning, dynamics, modeling, bifurcation analysis, steady cutting stability conditions.
@article{ND_2019_15_2_a3,
     author = {A. M. Gouskov and M. A. Guskov and D. D. Tung and G. Y. Panovko},
     title = {Nonlinear {Regenerative} {Dynamics} {Analysis} of the {Multicutter} {Turning} {Process}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {145--158},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_2_a3/}
}
TY  - JOUR
AU  - A. M. Gouskov
AU  - M. A. Guskov
AU  - D. D. Tung
AU  - G. Y. Panovko
TI  - Nonlinear Regenerative Dynamics Analysis of the Multicutter Turning Process
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 145
EP  - 158
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_2_a3/
LA  - ru
ID  - ND_2019_15_2_a3
ER  - 
%0 Journal Article
%A A. M. Gouskov
%A M. A. Guskov
%A D. D. Tung
%A G. Y. Panovko
%T Nonlinear Regenerative Dynamics Analysis of the Multicutter Turning Process
%J Russian journal of nonlinear dynamics
%D 2019
%P 145-158
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_2_a3/
%G ru
%F ND_2019_15_2_a3
A. M. Gouskov; M. A. Guskov; D. D. Tung; G. Y. Panovko. Nonlinear Regenerative Dynamics Analysis of the Multicutter Turning Process. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 2, pp. 145-158. http://geodesic.mathdoc.fr/item/ND_2019_15_2_a3/

[1] Problemy Mashinostroeniya i Nadezhnosti Mashin, 2012, no. 3, 3–9 (Russian) | DOI

[2] Azvar, M. and Budak, E., “Multi-Dimensional Modelling of Chatter Stability in Parallel Turning Operation”, Proc. of the 17th Internat. Conf. on Machine Design and Production (Bursa, Turkey, July 12–15, 2016), 13

[3] Benardos, P. G., Mosialos, S., and Vosniakos, G. C., “Prediction of Workpiece Elastic Deflections under Cutting Forces in Turning”, Robot. Comput. Integr. Manuf., 22:5–6 (2002), 505–514

[4] Brecher, C., Epple, A., Neus, S., and Fey, M., “Optimal Process Parameters for Parallel Turning Operations on Shared Cutting Surfaces”, Int. J. Mach. Tool. Manu., 95 (2015), 13—19 | DOI

[5] Paris, H., Brissaud, D., Gouskov, A., Guibert, N., and Rech, J., “Influence of the Ploughing Effect on the Dynamic Behavior of the Self-Vibratory Drilling Head”, CIRP Ann., 57:1 (2008), 385–388 | DOI

[6] Dombovari, Z., Barton, D. A. W., Wilson, R. E., and Stepan, G., “On the Global Dynamics of Chatter in the Orthogonal Cutting Model”, Int. J. Nonlin. Mech., 46:1 (2011), 330–338 | DOI

[7] Gerasimenko, A. A., Guskov, M. A., Gouskov, A. M., Lorong, Ph., and Panovko, G. Ya., “Analytical Approach of Turning Thin-Walled Tubular Parts. Stability Analysis of Regenerative Chatter”, Vibroeng. Proc., 8 (2016), 179–184

[8] Gouskov, A. M., Voronov, S. A., Paris, H., and Batzer, S. A., “Cylindrical Workpiece Turning Using Multiple-Cutting Tool”, Proc. of the Design Technical Conf. and Computers and Information Engineering Conf. (Pittsburgh, Pa., 2001)

[9] Gouskov, A. M., Voronov, S. A., Paris, H., and Batzer, S. A., “Nonlinear Dynamics of a Machining System with Two Interdependent Delays”, Comm. Nonlinear Sci. Numer. Simulat., 7:3 (2002), 207–221 | DOI | Zbl

[10] Gouskov, A. M., Guskov, M. A., Lorong, Ph., and Panovko, G. Ya., “Influence of the Clearance Face on the Condition of Chatter Self-Excitation during Turning”, IJMMM, 19:1 (2017), 17–39 | DOI

[11] Gouskov, A. M., Guskov, M. A., Ding Dyk Tung, and Panovko, G. Ya., “Multi-Cutter Turning Process Stability Analysis”, Vibroeng. Proc., 17 (2018), 124–128 | DOI

[12] Problemy Mashinostroeniya i Nadezhnosti Mashin, 2018, no. 4, 19–27 (Russian) | DOI

[13] Gouskov, A. M., “Dynamics of Two-Cutter Turning: 1”, Stanki i Instrument, 2004, no. 11, 3–6 (Russian)

[14] Kalidasan, R., Yatin, M., Sarma, D. K., Senthilvelan, S., and Dixit, U. S., “An Experimental Study of Cutting Forces and Temperature in Multi-Tool Turning of Grey Cast Iron”, IJMMM, 18:5/6 (2016), 540–551 | DOI

[15] Kondratenko, K., Gouskov, A., Guskov, M., Lorong, Ph., and Panovko, G., “Analysis of Indirect Measurement of Cutting Forces Turning Metal Cylindrical Shells”, Vibration Engineering and Technology of Machinery, Mechan. Machine Science, 23, ed. J. Sinha, Springer, Cham, 2015, 929–937 (Russian) | DOI

[16] Kozochkin, M. P., Dynamic of Cutting Process: Theory, Experiment, Analysis, Lambert, Saarbrücken, 2013, 297 pp. (Russian)

[17] Kudinov, V. A., Dynamics of Machine Tools, Mashinostroenie, Moscow, 1967, 357 pp. (Russian)

[18] Lamikiz, A., Lopez de Lacalle, L. N., Sanchez, J. A., and Bravo, U., “Calculation of the Specific Cutting Coefficients and Geometrical Aspects in Sculptured Surface Machining”, Mach. Sci. Technol., 9:3 (2005), 411–436 | DOI

[19] Ozturk, E., Comak, A., and Budak, E., “Tuning of Tool Dynamics for Increased Stability of Parallel (Simultaneous) Turning Processes”, J. Sound Vibration, 360 (2016), 17–30 | DOI

[20] Reith, M. J., Bachrathy, D., and Stepan, G., “Improving the Stability of Multi-Cutter Turning with Detuned Dynamics, Machining Science and Technology”, Mach. Sci. Technol., 20:3 (2016), 440–459 | DOI

[21] Wang, X. and Feng, C. X., “Development of Empirical Models for Surface Roughness Prediction in Finish Turning”, Int. J. Adv. Manuf. Technol., 20:5 (2002), 348–356 | DOI