Nonlinear Regenerative Dynamics Analysis of the Multicutter Turning Process
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 2, pp. 145-158

Voir la notice de l'article provenant de la source Math-Net.Ru

This work presents nonlinear dynamics modeling results for an investigation of continuous cut stability in multicutter turning. The dynamics modeling of the multicutter turning process is carried out through the complete mathematical model of nonlinear dynamics. The dynamic stability of the system is estimated through the possibility of self-oscillations generation (Poincaré – Andronov –Hopf bifurcation) of the cutters with lobes of the stability diagram. This paper analyzes the relationship of the axial offset and the cutter angular position for compensation of the system parameters. As a result, the analysis of the influence of the technological system parameters on the chip thickness, their cross-sectional shape and the stability of the system is carried out.
Keywords: multicutter turning, dynamics, modeling, bifurcation analysis, steady cutting stability conditions.
@article{ND_2019_15_2_a3,
     author = {A. M. Gouskov and M. A. Guskov and D. D. Tung and G. Y. Panovko},
     title = {Nonlinear {Regenerative} {Dynamics} {Analysis} of the {Multicutter} {Turning} {Process}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {145--158},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_2_a3/}
}
TY  - JOUR
AU  - A. M. Gouskov
AU  - M. A. Guskov
AU  - D. D. Tung
AU  - G. Y. Panovko
TI  - Nonlinear Regenerative Dynamics Analysis of the Multicutter Turning Process
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 145
EP  - 158
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_2_a3/
LA  - ru
ID  - ND_2019_15_2_a3
ER  - 
%0 Journal Article
%A A. M. Gouskov
%A M. A. Guskov
%A D. D. Tung
%A G. Y. Panovko
%T Nonlinear Regenerative Dynamics Analysis of the Multicutter Turning Process
%J Russian journal of nonlinear dynamics
%D 2019
%P 145-158
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_2_a3/
%G ru
%F ND_2019_15_2_a3
A. M. Gouskov; M. A. Guskov; D. D. Tung; G. Y. Panovko. Nonlinear Regenerative Dynamics Analysis of the Multicutter Turning Process. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 2, pp. 145-158. http://geodesic.mathdoc.fr/item/ND_2019_15_2_a3/