A Spherical Particle Settling Towards a Corrugated Wall
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 2, pp. 125-134

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the assumption of low Reynolds number, the flow around a spherical particle settling towards a corrugated wall in a fluid at rest is described by Stokes equations. In the case of the small amplitude of wall roughness, the asymptotic expansion coupled with the Lorentz reciprocal theorem are used to derive analytical expressions of the hydrodynamic effects due to wall roughness. The evolution of these effects in terms of roughness parameters and also the sphere-wall distance are discussed.
Keywords: Stokes equations, low Reynolds number, roughness effects, asymptotic expansion, Lorentz reciprocal theorem.
@article{ND_2019_15_2_a1,
     author = {Kh. Lamzoud and R. Assoudi and F. Bouisfi and M. Chaoui},
     title = {A {Spherical} {Particle} {Settling} {Towards} a {Corrugated} {Wall}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {125--134},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_2_a1/}
}
TY  - JOUR
AU  - Kh. Lamzoud
AU  - R. Assoudi
AU  - F. Bouisfi
AU  - M. Chaoui
TI  - A Spherical Particle Settling Towards a Corrugated Wall
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 125
EP  - 134
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_2_a1/
LA  - ru
ID  - ND_2019_15_2_a1
ER  - 
%0 Journal Article
%A Kh. Lamzoud
%A R. Assoudi
%A F. Bouisfi
%A M. Chaoui
%T A Spherical Particle Settling Towards a Corrugated Wall
%J Russian journal of nonlinear dynamics
%D 2019
%P 125-134
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_2_a1/
%G ru
%F ND_2019_15_2_a1
Kh. Lamzoud; R. Assoudi; F. Bouisfi; M. Chaoui. A Spherical Particle Settling Towards a Corrugated Wall. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 2, pp. 125-134. http://geodesic.mathdoc.fr/item/ND_2019_15_2_a1/