A Spherical Particle Settling Towards a Corrugated Wall
Russian journal of nonlinear dynamics, Tome 15 (2019) no. 2, pp. 125-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the assumption of low Reynolds number, the flow around a spherical particle settling towards a corrugated wall in a fluid at rest is described by Stokes equations. In the case of the small amplitude of wall roughness, the asymptotic expansion coupled with the Lorentz reciprocal theorem are used to derive analytical expressions of the hydrodynamic effects due to wall roughness. The evolution of these effects in terms of roughness parameters and also the sphere-wall distance are discussed.
Keywords: Stokes equations, low Reynolds number, roughness effects, asymptotic expansion, Lorentz reciprocal theorem.
@article{ND_2019_15_2_a1,
     author = {Kh. Lamzoud and R. Assoudi and F. Bouisfi and M. Chaoui},
     title = {A {Spherical} {Particle} {Settling} {Towards} a {Corrugated} {Wall}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {125--134},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2019_15_2_a1/}
}
TY  - JOUR
AU  - Kh. Lamzoud
AU  - R. Assoudi
AU  - F. Bouisfi
AU  - M. Chaoui
TI  - A Spherical Particle Settling Towards a Corrugated Wall
JO  - Russian journal of nonlinear dynamics
PY  - 2019
SP  - 125
EP  - 134
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2019_15_2_a1/
LA  - ru
ID  - ND_2019_15_2_a1
ER  - 
%0 Journal Article
%A Kh. Lamzoud
%A R. Assoudi
%A F. Bouisfi
%A M. Chaoui
%T A Spherical Particle Settling Towards a Corrugated Wall
%J Russian journal of nonlinear dynamics
%D 2019
%P 125-134
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2019_15_2_a1/
%G ru
%F ND_2019_15_2_a1
Kh. Lamzoud; R. Assoudi; F. Bouisfi; M. Chaoui. A Spherical Particle Settling Towards a Corrugated Wall. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 2, pp. 125-134. http://geodesic.mathdoc.fr/item/ND_2019_15_2_a1/

[1] Williams, Ph. S., Koch, Th., and Giddings, J. C., “Characterization of Near-Wall Hydrodynamic Lift Forces Using Sedimentation Field-Flow Fractionation”, Chem. Eng. Commun., 111:1 (1992), 121–147 | DOI | MR

[2] Pasol, L., Martin, M., Ekiel-Jeżewska, M. L., Wajnryb, E., Bławzdziewicz, J., and Feuillebois, F., “Motion of Sphere Parallel to Plane Walls in a Poiseuille Flow. Application to Field-Flow Fractionation and Hydrodynamic Chromatography”, Chem. Eng. Sci., 66:18 (2011), 4078–4089 | DOI

[3] Beebe, D. J., Mensing, G. A., and Walker, G. M., “Physics and Applications of Microfluidics in Biology”, Annu. Rev. Biomed. Eng., 4:1 (2002), 261–286 | DOI | MR

[4] Priezjev, N. V., Darhuber, A. A., and Troian, S. M., “Slip Behavior in Liquid Films on Surfaces of Patterned Wettability: Comparison between Continuum and Molecular Dynamics Simulations”, Phys. Rev. E, 71:4 (2005), 041608, 11 pp. | DOI

[5] Feuillebois, F., “Some Theoretical Results for the Motion of Solid Spherical Particles in a Viscous Fluid”, Multiphase Sci. Technol., 4:1–4 (1989), 583–789 | DOI

[6] O'Neill, M. E., “A Slow Motion of Viscous Liquid Caused by a Slowly Moving Solid Sphere: An Addendum”, Mathematika, 14:2 (1967), 170–172 | DOI | MR | Zbl

[7] O'Neill, M. E., “A Slow Motion of Viscous Liquid Caused by a Slowly Moving Solid Sphere”, Mathematika, 11:1 (1964), 67–74 | DOI | MR | Zbl

[8] Goldman, A. J., Cox, R. G., and Brenner, H., “Slow Viscous Motion of a Sphere Parallel to a Plane Wall: 1. Motion through a Quiescent Fluid”, Chem. Eng. Sci., 22:4 (1967), 637–651 | DOI

[9] Chaoui, M. and Feuillebois, F., “Creeping Flow around a Sphere in a Shear Flow Close to a Wall”, Q. J. Mech. Appl. Math., 56:3 (2003), 381–410 | DOI | MR | Zbl

[10] Navier, C. L. M. H., “Mémoire sur les lois du movement des fluids”, Mém. Acad. Sci., 6 (1827), 389–440

[11] Maxwell, J. C., “On Stresses in Rarified Gases Arising Inequalities of Temperature”, Philos. Trans. Royal Soc., 170 (1879), 231–256 | DOI

[12] David, A. M. J., Kezirian, M. T., and Brenner, H., “On the Stokes – Einstein Model of Surface Diffusion along Solid Surfaces: Slip Boundary Conditions”, J. Colloid Interface Sci., 165:1 (1994), 129–140 | DOI | MR

[13] Elasmi, L., “Singularity Method for Stokes with Slip Boundary Condition”, J. Appl. Math., 73:5 (2008), 724–739 | MR | Zbl

[14] Ghalya, N., Hydrodynamic Interactions between a Solid Particle and a Smooth Wall with Slip Condition of Navier, PhD Thesis, École Polytechnique, Palaiseau, 2012

[15] Assoudi, R., Lamzoud, K., and Chaoui, M., “Influence of the Wall Roughness on a Linear Shear Flow”, FME Trans., 46:2 (2019), 272–277

[16] Falade, A. and Brenner, H., “First-Order Wall Curvature Effects upon the Stokes Resistance of a Spherical Particle Moving in Close Proximity to a Solid Wall”, J. Fluid Mech., 193 (1988), 533–568 | DOI | MR | Zbl

[17] Smart, J. R. and Leighton, D. T., Jr., “Measurement of the Hydrodynamic Surface Roughness of Noncolloidal Spheres”, Phys. Fluid, 1:1 (1989), 52–60 | DOI

[18] Smart, J. R., Beimfohr, S., and Leighton, D. T., Jr., “Measurement of the Translational and Rotational Velocities of a Noncolloidal Sphere Rolling Down a Smooth Inclined Plane at Low Reynolds Number”, Phys. Fluid, 5:1 (1993), 13–24 | DOI

[19] Lecoq, N., Anthore, R., Cichocki, B., Szymczak, P., and Feuillebois, F., “Drag Force on a Sphere Moving Towards a Corrugated Wall”, J. Fluid Mech., 513 (2004), 247–264 | DOI | Zbl

[20] Lecoq, N., “Boundary Conditions for Creeping Flow along Periodic or Random Rough Surfaces, Experimental and Theoretical Results”, J. Phys. Conf. Ser., 392:1 (2012), 012010, 19 pp. | DOI

[21] Assoudi, R., Chaoui, M., Feuillebois, F., and Allouche, H., “Motion of a Spherical Particle along a Rough Wall in a Shear Flow”, Z. Angew. Math. Phys., 69:5 (2018), Art. 112, 30 pp. | DOI | MR

[22] Pasol, L., Chaoui, M., Yahiaoui, S., and Feuillebois, F., “Analytical Solution for a Spherical Particle near a Wall in Axisymmetrical Polynomial Creeping Flows”, Phys. Fluids, 17:7 (2005), 073602, 13 pp. | DOI | MR | Zbl

[23] Bernner, H., “The Slow Motion of a Sphere through a Viscous Fluid towards a Plane Surface”, Chem. Eng. Sci., 16:3–4 (1961), 242–251 | DOI