Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2019_15_1_a9, author = {M. M. Anikushin}, title = {On the {Smith} {Reduction} {Theorem} for {Almost} {Periodic} {ODEs} {Satisfying} the {Squeezing} {Property}}, journal = {Russian journal of nonlinear dynamics}, pages = {97--108}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2019_15_1_a9/} }
TY - JOUR AU - M. M. Anikushin TI - On the Smith Reduction Theorem for Almost Periodic ODEs Satisfying the Squeezing Property JO - Russian journal of nonlinear dynamics PY - 2019 SP - 97 EP - 108 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2019_15_1_a9/ LA - en ID - ND_2019_15_1_a9 ER -
M. M. Anikushin. On the Smith Reduction Theorem for Almost Periodic ODEs Satisfying the Squeezing Property. Russian journal of nonlinear dynamics, Tome 15 (2019) no. 1, pp. 97-108. http://geodesic.mathdoc.fr/item/ND_2019_15_1_a9/
[1] Anikushin, M. M., “On the Liouville Phenomenon in Estimates of Fractal Dimensions of Forced Quasi-Periodic Oscillations”, Vestnik St. Petersb. Univ. Math., 52:3 (2019) (to appear)
[2] Anikushin, M. M., Dimensional Aspects of Almost Periodic Dynamics, , 2019 https://www.researchgate.net/project/Dimensional-Aspects-of-Almost-Periodic-Dynamics-Analytical-and-Numerical-Approaches
[3] Differ. Uravn., 2015, no. 3, 51–93 (Russian) | DOI | MR | Zbl | Zbl
[4] Cartwright, M. L., “Almost Periodic Differential Equations and Almost Periodic Flows”, J. Differential Equations, 5 (1969), 167–181 | DOI | MR | Zbl
[5] Glendinning, P., Jäger, T. H., and Keller, G., “How Chaotic Are Strange Non-Chaotic Attractors?”, Nonlinearity, 19:9 (2006), 2005–2022 | DOI | MR | Zbl
[6] Feudel, U., Kuznetsov, S., and Pikovsky, A., Strange Nonchaotic Attractors: Dynamics between Order and Chaos in Quasiperiodically Forced Systems, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 56, World Sci., Hackensack, N.J., 2006 | MR
[7] Fink, A. M., Almost Periodic Differential Equations, Lecture Notes in Math., 377, Springer, Berlin, 1974, 342 pp. | DOI | MR | Zbl
[8] Leonov, G. A., Kuznetsov, N. V., and Reitmann, V., Attractor Dimension Estimates for Dynamical Systems: Theory and Computation, Springer, Cham, 2019 (to appear)
[9] Levitan, B. M. and Zhikov, V. V., Almost Periodic Functions and Differential Equations, Cambridge Univ. Press, Cambridge, 1982 | MR | Zbl
[10] O'Brien, G. C., “The Frequencies of Almost Periodic Solutions of Almost Periodic Differential Equations”, J. Austral. Math. Soc., 17 (1974), 332–344 | MR | Zbl
[11] Popov, S. and Reitmann, V., “Frequency Domain Conditions for Finite-Dimensional Projectors and Determining Observations for the Set of Amenable Solutions”, Discrete Contin. Dyn. Syst., 34:1 (2014), 249–267 | DOI | MR | Zbl
[12] Robinson, J. C., “Inertial Manifolds and the Strong Squeezing Property”, Nonlinear Evolution Equations Dynamical Systems: NEEDS'94 (Los Alamos, N.M.), World Sci., River Edge, N.J., 1995, 178–187 | MR | Zbl
[13] Smith, R. A., “Massera's Convergence Theorem for Periodic Nonlinear Differential Equations”, J. Math. Anal. Appl., 120:2 (1986), 679–708 | DOI | MR | Zbl
[14] Smith, R. A., “Convergence Theorems for Periodic Retarded Functional-Differential Equations”, Proc. London Math. Soc. (3), 60:3 (1990), 581–608 | DOI | MR | Zbl
[15] Suresh, K., Prasad, A., and Thamilmaran, K., “Birth of Strange Nonchaotic Attractors through Formation and Merging of Bubbles in a Quasiperiodically Forced Chua's Oscillator”, Phys. Lett. A, 377:8 (2013), 612–621 | DOI | MR
[16] Yakubovich, V. A., Leonov, G. A., and Gelig, A. Kh., Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities, Ser. Stab. Vib. Control Syst. Ser. A, 14, World Sci., River Edge, N.J., 2004 | MR | Zbl