On the Motion of a Body with a Moving Internal Mass on a Rough Horizontal Plane
Russian journal of nonlinear dynamics, Tome 14 (2018) no. 4, pp. 519-542
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a vibration-driven system which consists of a rigid body and an internal mass. The internal mass is a particle moving in a circle inside the body. The center of the circle is located at the mass center of the body and the absolute value of particle velocity is a constant. The body performs rectilinear motion on a horizontal plane, whereas the particle moves in a vertical plane. We suppose that dry friction acts between the plane and the body.
We have investigated the dynamics of the above system in detail and given a full description of the body’s motion for any values of its initial velocity. In particular, it is shown that there always exists a periodic mode of motion. Depending on parameter values, one of three types of this periodic mode takes place. At any initial velocity the body either enters a periodic mode during a finite time interval or it asymptotically approaches the periodic mode.
Keywords:
periodic motion, dry friction, rigid body, vibration-driven system.
@article{ND_2018_14_4_a6,
author = {Bardin B. S. and Panev A. S.},
title = {On the {Motion} of a {Body} with a {Moving} {Internal} {Mass} on a {Rough} {Horizontal} {Plane}},
journal = {Russian journal of nonlinear dynamics},
pages = {519--542},
publisher = {mathdoc},
volume = {14},
number = {4},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ND_2018_14_4_a6/}
}
TY - JOUR AU - Bardin B. S. AU - Panev A. S. TI - On the Motion of a Body with a Moving Internal Mass on a Rough Horizontal Plane JO - Russian journal of nonlinear dynamics PY - 2018 SP - 519 EP - 542 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2018_14_4_a6/ LA - en ID - ND_2018_14_4_a6 ER -
Bardin B. S.; Panev A. S. On the Motion of a Body with a Moving Internal Mass on a Rough Horizontal Plane. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 4, pp. 519-542. http://geodesic.mathdoc.fr/item/ND_2018_14_4_a6/