Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2018_14_4_a4, author = {N. N. Fimin and V. M. Chechetkin}, title = {The {Possibility} of {Introducing} of {Metric} {Structure} in {Vortex} {Hydrodynamic} {Systems}}, journal = {Russian journal of nonlinear dynamics}, pages = {495--501}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2018_14_4_a4/} }
TY - JOUR AU - N. N. Fimin AU - V. M. Chechetkin TI - The Possibility of Introducing of Metric Structure in Vortex Hydrodynamic Systems JO - Russian journal of nonlinear dynamics PY - 2018 SP - 495 EP - 501 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2018_14_4_a4/ LA - en ID - ND_2018_14_4_a4 ER -
N. N. Fimin; V. M. Chechetkin. The Possibility of Introducing of Metric Structure in Vortex Hydrodynamic Systems. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 4, pp. 495-501. http://geodesic.mathdoc.fr/item/ND_2018_14_4_a4/
[1] Arnold, V. I., “Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits”, Ann. Inst. Fourier (Grenoble), 1:1 (1966), 319–361 | DOI | MR | Zbl
[2] Casetti, L., Pettini, M., and Cohen, E. G. D., “Geometric Approach to Hamiltonian Dynamics and Statistical Mechanics”, Phys. Rep., 337:3 (2000), 237–341 | DOI | MR
[3] Chueshov, I. D., Introduction to the Theory of Infinite-Dimensional Dissipative Systems, ACTA, Kharkiv, 2002, 436 pp. | MR | Zbl
[4] Mat. Model., 27:9 (2015), 81–88 | DOI | MR | MR | Zbl
[5] Holm, D. D., Marsden, J. E., Ratiu, T., and Weinstein, A., “Nonlinear Stability of Fluid and Plasma Equilibria”, Phys. Rep., 123:1–2 (1985), 116 pp. | MR | Zbl
[6] Kambe, T., “Geometrical Theory of Two-Dimensional Hydrodynamics with Special Reference to a System of Point Vortices”, Fluid Dynam. Res., 33:1–2 (2003), 223–249 | DOI | MR | Zbl
[7] Kozlov, V. V., Dynamical Systems 10: General Theory of Vortices, Encyclopaedia Math. Sci., 67, Springer, Berlin, 2003, 184 pp. | DOI | MR
[8] Miron, R., Hrimiuc, D., Shimada, H., and Sabau, S. V., The Geometry of Hamilton and Lagrange Spaces, Kluwer, Dordrecht, 2001, xvi+338 pp. | MR | Zbl
[9] van Saarloos, W., Bedeaux, D., and Mazur, P., “Hydrodynamics for an Ideal Fluid: Hamiltonian Formalism and Liouville Equation”, Phys. A, 107:1 (1981), 109–125 | DOI | MR
[10] Vasylkevych, S. and Marsden, J. E., “The Lie – Poisson Structure of the Euler Equations of an Ideal Fluid”, Dyn. Partial Differ. Equ., 2:4 (2005), 281–300 | DOI | MR | Zbl
[11] Dokl. Akad. Nauk, 461:2 (2015), 136–139 (Russian) | DOI | MR | MR | Zbl