Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2018_14_4_a2, author = {I. I. Maglevanny and V. A. Smolar and T. I. Karyakina}, title = {Weak {Signals} {Amplification} {Through} {Controlled} {Bifurcations} in {Quasi-Two-Dimensional} {Electron} {Gas}}, journal = {Russian journal of nonlinear dynamics}, pages = {453--472}, publisher = {mathdoc}, volume = {14}, number = {4}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2018_14_4_a2/} }
TY - JOUR AU - I. I. Maglevanny AU - V. A. Smolar AU - T. I. Karyakina TI - Weak Signals Amplification Through Controlled Bifurcations in Quasi-Two-Dimensional Electron Gas JO - Russian journal of nonlinear dynamics PY - 2018 SP - 453 EP - 472 VL - 14 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2018_14_4_a2/ LA - en ID - ND_2018_14_4_a2 ER -
%0 Journal Article %A I. I. Maglevanny %A V. A. Smolar %A T. I. Karyakina %T Weak Signals Amplification Through Controlled Bifurcations in Quasi-Two-Dimensional Electron Gas %J Russian journal of nonlinear dynamics %D 2018 %P 453-472 %V 14 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2018_14_4_a2/ %G en %F ND_2018_14_4_a2
I. I. Maglevanny; V. A. Smolar; T. I. Karyakina. Weak Signals Amplification Through Controlled Bifurcations in Quasi-Two-Dimensional Electron Gas. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 4, pp. 453-472. http://geodesic.mathdoc.fr/item/ND_2018_14_4_a2/
[1] Gammaitoni, L., Hänggi, P., Jung, P., and Marchesoni, F., “Stochastic Resonance”, Rev. Mod. Phys., 70:1 (1998), 223–287 | DOI
[2] Landa, P. S. and McClintock, P. V. E., “Vibrational Resonance”, J. Phys. A, 33:45 (2000), L433–L438 | DOI | MR | Zbl
[3] Karabalin, R. B., Lifshitz, R., Cross, M. C., Matheny, M. H., Masmanidis, S. C., and Roukes, M. L., “Signal Amplification by Sensitive Control of Bifurcation Topology”, Phys. Rev. Lett., 106:9 (2011), 094102, 4 pp. | DOI
[4] Vijay, R., Devoret, M. H., and Siddiqi, I., “Invited Review Article: The Josephson Bifurcation Amplifier”, Rev. Sci. Instrum., 80:11 (2009), 111101, 17 pp. | DOI
[5] Guckenheimer, J. and Holmes, Ph., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Appl. Math. Sci., 42, 5th ed., Springer, New York, 1997, 459 pp. | MR
[6] Jafrate, G. J., Ferry, D., and Reich, R., “Lateral (Two-Dimensional) Superlattices: Quantum-Well Confinement and Charge Instabilities”, Surf. Sci., 113:1–3 (1982), 485–488 | DOI
[7] Reich, R. K., Crondin, R. O., and Ferry, D. K., “Transport in Lateral Surface Superlattices”, Phys. Rev. B, 27:6 (1983), 3483–3493 | DOI
[8] Shmelev, G. M. and Maglevanny, I. I., “Transverse EMF in Lateral Superlattices”, Physics of Low-Dimensional Structures, 9–10 (1996), 81–88
[9] Maglevanny, I. I., Smolar, V. A., and Karyakina, T. I., “Thermally and Electrically Controllable Multiple High Harmonics Generation by Harmonically Driven Quasi-Two-Dimensional Electron Gas”, Superlattices Microstruct., 118 (2018), 29–44 | DOI
[10] Epshtein, E. M., Shmelev, G. M., and Maglevanny, I. I., “Ferromagnetic and Ferroelectric Properties of Nonequilibrium Electron Gas”, Phys. Lett. A, 254:1–2 (1999), 107–111 | DOI
[11] Maglevanny, I. I., “Highly Nonlinear Phenomena of Self-Organization of Quasi-Two-Dimensional Electron Gas in High Magnetic and Electric Fields”, Phys. Status Solidi B, 246:6 (2009), 1297–1305 | DOI
[12] Grahn, H. T., von Klitzing, K., Ploog, K., and Döhler, G. H., “Electrical Transport in Narrow-Miniband Semiconductor Superlattices”, Phys. Rev. B, 43:14 (1991), 12094–12097 | DOI
[13] Bass, F. G. and Tetervov, A. P., “High-Frequency Phenomena in Semiconductor Superlattices”, Phys. Rep., 140:5 (1986), 237–322 | DOI
[14] Jung, P. and Talkner, P., “Suppression of Higher Harmonics at Noise Induced Resonances”, Phys. Rev. E, 51:3 (1995), 2640–2643 | DOI
[15] Contemporary Problems in Statistical Physics, ed. G. H. Weiss, SIAM, Philadelphia, 1994, xviii + 251 pp. | Zbl
[16] Gilmore, R., Catastrophe Theory for Scientists and Engineers, Dover, New York, 1993, 666 pp. | MR
[17] Poston, T. and Stewart, I., Catastrophe Theory and Its Application, Pitman, London, 1978, xviii+491 pp. | MR
[18] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., Numerical Recipes: The Art of Scientific Computing, 3rd ed., Cambridge University Press, New York, 2007, 1256 pp. | MR | Zbl
[19] Hairer, E., Nørsett, S. P., and Wanner, G., Solving Ordinary Differential Equations: 1. Nonstiff Problems, Springer Series in Computational Mathematics, 8, 2nd ed., rev., Springer, Berlin, 1993, XV, 528 pp. | MR
[20] Bendat, J. S. and Piersol, A. G., Random Data: Analysis and Measurement Procedures, 4th ed., Wiley, New York, 2010, 640 pp. | MR | Zbl