Optimal Bang-Bang Trajectories in Sub-Finsler Problem on the Cartan Group
Russian journal of nonlinear dynamics, Tome 14 (2018) no. 4, pp. 583-593.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cartan group is the free nilpotent Lie group of step 3, with 2 generators. This paper studies the Cartan group endowed with the left-invariant sub-Finsler $\ell_\infty$ norm. We adopt the viewpoint of time-optimal control theory. By Pontryagin maximum principle, all sub-Finsler length minimizers belong to one of the following types: abnormal, bang-bang, singular, and mixed. Bang-bang controls are piecewise controls with values in the vertices of the set of control parameter. In a previous work, it was shown that bang-bang trajectories have a finite number of patterns determined by values of the Casimir functions on the dual of the Cartan algebra. In this paper we consider, case by case, all patterns of bang-bang trajectories, and obtain detailed upper bounds on the number of switchings of optimal control. For bang-bang trajectories with low values of the energy integral, we show optimality for arbitrarily large times. The bang-bang trajectories with high values of the energy integral are studied via a second order necessary optimality condition due to A. Agrachev and R. Gamkrelidze. This optimality condition provides a quadratic form, whose sign-definiteness is related to optimality of bangbang trajectories. For each pattern of these trajectories, we compute the maximum number of switchings of optimal control. We show that optimal bang-bang controls may have not more than 11 switchings. For particular patterns of bang-bang controls, we obtain better bounds. In such a way we improve the bounds obtained in previous works. On the basis of results of this work we can start to study the cut time along bang-bang trajectories, i.e., the time when these trajectories lose their optimality. This question will be considered in subsequent works.
Keywords: sub-Finsler geometry, optimal control, switchings, bang-bang trajectories.
@article{ND_2018_14_4_a10,
     author = {Yu. L. Sachkov},
     title = {Optimal {Bang-Bang} {Trajectories} in {Sub-Finsler} {Problem} on the {Cartan} {Group}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {583--593},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2018_14_4_a10/}
}
TY  - JOUR
AU  - Yu. L. Sachkov
TI  - Optimal Bang-Bang Trajectories in Sub-Finsler Problem on the Cartan Group
JO  - Russian journal of nonlinear dynamics
PY  - 2018
SP  - 583
EP  - 593
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2018_14_4_a10/
LA  - en
ID  - ND_2018_14_4_a10
ER  - 
%0 Journal Article
%A Yu. L. Sachkov
%T Optimal Bang-Bang Trajectories in Sub-Finsler Problem on the Cartan Group
%J Russian journal of nonlinear dynamics
%D 2018
%P 583-593
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2018_14_4_a10/
%G en
%F ND_2018_14_4_a10
Yu. L. Sachkov. Optimal Bang-Bang Trajectories in Sub-Finsler Problem on the Cartan Group. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 4, pp. 583-593. http://geodesic.mathdoc.fr/item/ND_2018_14_4_a10/

[1] Boscain, U., Chambrion, Th., and Charlot, G., “Nonisotropic $3$-Level Quantum Systems: Complete Solutions for Minimum Time and Minimum Energy”, Discrete Contin. Dyn. Syst. Ser. B, 5:4 (2005), 957–990 | DOI | MR | Zbl

[2] Sibirsk. Mat. Zh., 30:2 (1989), 14–28, 225 (Russian) | DOI | MR

[3] Sibirsk. Mat. Zh., 30:1 (1989), 23–34 (Russian) | DOI | MR

[4] Breuillard, E. and Le Donne, E., “On the Rate of Convergence to the Asymptotic Cone for Nilpotent Groups and Sub-Finsler Geometry”, Proc. Natl. Acad. Sci. USA, 110:48 (2013), 19220–19226 | DOI | MR | Zbl

[5] Clelland, J. N. and Moseley, Ch. G., “Sub-Finsler Geometry in Dimension Three”, Differential Geom. Appl., 24:6 (2006), 628–651 | DOI | MR | Zbl

[6] Cowling, M. G. and Martini, A., “Sub-Finsler Geometry and Finite Propagation Speed”, Trends in Harmonic Analysis, Springer INdAM Ser., 3, ed. M. A. Picardello, Springer, Milan, 2013, 147–205, xii+447 pp. | DOI | MR | Zbl

[7] Clelland, J. N., Moseley, Ch. G., and Wilkens, G. R., “Geometry of Sub-Finsler Engel Manifolds”, Asian J. Math., 11:4 (2007), 699–726 | DOI | MR | Zbl

[8] Hakavuori, E. and Le Donne, E., Blowups and Blowdowns of Geodesics in Carnot Groups, 2018, arXiv: 1806.09375 [math.MG]

[9] Le Donne, E., “A Metric Characterization of Carnot Groups”, Proc. Amer. Math. Soc., 143:2 (2015), 845–849 | DOI | MR | Zbl

[10] Pansu, P., “Métriques de Carnot – Carathéodory et quasiisométries des espaces symétriques de rang un”, Ann. of Math. (2), 129:1 (1989), 1–60 | DOI | MR | Zbl

[11] López, C. and Martínez, E., “Sub-Finslerian Metric Associated to an Optimal Control System”, SIAM J. Control Optim., 39 (2000), 798–811 | DOI | MR | Zbl

[12] Mat. Sb., 194:9 (2003), 63–90 (Russian) | DOI | DOI | MR | Zbl

[13] Agrachev, A. A. and Sachkov, Yu. L., Control Theory from the Geometric Viewpoint, Encyclopaedia Math. Sci., 87, Springer, Berlin, 2004 | DOI | MR | Zbl

[14] Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., and Mishchenko, E. F., The Mathematical Theory of Optimal Processes, Wiley, New York, 1962, 360 pp. | MR | Zbl

[15] Agrachev, A. A. and Gamkrelidze, R. V., “Symplectic Geometry for Optimal Control”, Nonlinear Controllability and Optimal Control, Monogr. Textbooks Pure Appl. Math., 133, ed. H. J. Sussmann, Dekker, New York, 1990, 263–277 | MR | Zbl

[16] Barilari, D., Boscain, U., Le Donne, E., and Sigalotti, M., “Sub-Finsler Structures from the Time-Optimal Control Viewpoint for Some Nilpotent Distributions”, J. Dyn. Control Syst., 23:3 (2017), 547–575 | DOI | MR | Zbl

[17] Gantmacher, F. R., The Theory of Matrices: In 2 Vols., Chelsea, New York, 1959 | MR

[18] Ardentov, A., Le Donne, E., and Sachkov, Yu., “A Sub-Finsler Problem on the Cartan Group”, Tr. Mat. Inst. Steklova, 2019 (to appear) | MR

[19] Ardentov, A., Le Donne, E., and Sachkov, Yu., “Sub-Finsler Geodesics on the Cartan Group”, Regul. Chaotic Dyn., 2019 (to appear) | MR

[20] Sachkov, Yu., “Conjugate and Cut Time in the Sub-Riemannian Problem on the Group of Motions of a Plane”, ESAIM Control Optim. Calc. Var., 16:4 (2010), 1018–1039 | DOI | MR | Zbl

[21] Ardentov, A. A. and Sachkov, Yu. L., “Cut Time in Sub-Riemannian Problem on Engel Group”, ESAIM Control Optim. Calc. Var., 21:4 (2015), 958–988 | DOI | MR | Zbl

[22] Podobryaev, A. V. and Sachkov, Yu. L., “Cut Locus of a Left Invariant Riemannian Metric on $SO(3)$ in the Axisymmetric Case”, J. Geom. Phys., 110 (2016), 436–453 | DOI | MR | Zbl

[23] Butt, Y. A., Sachkov, Yu. L., and Bhatti, A. I., “Cut Locus and Optimal Synthesis in Sub-Riemannian Problem on the Lie Group $\rm SH(2)$”, J. Dyn. Control Syst., 23:1 (2017), 155–195 | DOI | MR | Zbl

[24] Podobryaev, A. V. and Sachkov, Yu. L., “Symmetric Riemannian Problem on the Group of Proper Isometries of Hyperbolic Plane”, J. Dyn. Control Syst., 24:3 (2018), 391–423 | DOI | MR | Zbl