Optimal Bang-Bang Trajectories in Sub-Finsler Problem on the Cartan Group
Russian journal of nonlinear dynamics, Tome 14 (2018) no. 4, pp. 583-593

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cartan group is the free nilpotent Lie group of step 3, with 2 generators. This paper studies the Cartan group endowed with the left-invariant sub-Finsler $\ell_\infty$ norm. We adopt the viewpoint of time-optimal control theory. By Pontryagin maximum principle, all sub-Finsler length minimizers belong to one of the following types: abnormal, bang-bang, singular, and mixed. Bang-bang controls are piecewise controls with values in the vertices of the set of control parameter. In a previous work, it was shown that bang-bang trajectories have a finite number of patterns determined by values of the Casimir functions on the dual of the Cartan algebra. In this paper we consider, case by case, all patterns of bang-bang trajectories, and obtain detailed upper bounds on the number of switchings of optimal control. For bang-bang trajectories with low values of the energy integral, we show optimality for arbitrarily large times. The bang-bang trajectories with high values of the energy integral are studied via a second order necessary optimality condition due to A. Agrachev and R. Gamkrelidze. This optimality condition provides a quadratic form, whose sign-definiteness is related to optimality of bangbang trajectories. For each pattern of these trajectories, we compute the maximum number of switchings of optimal control. We show that optimal bang-bang controls may have not more than 11 switchings. For particular patterns of bang-bang controls, we obtain better bounds. In such a way we improve the bounds obtained in previous works. On the basis of results of this work we can start to study the cut time along bang-bang trajectories, i.e., the time when these trajectories lose their optimality. This question will be considered in subsequent works.
Keywords: sub-Finsler geometry, optimal control, switchings, bang-bang trajectories.
@article{ND_2018_14_4_a10,
     author = {Yu. L. Sachkov},
     title = {Optimal {Bang-Bang} {Trajectories} in {Sub-Finsler} {Problem} on the {Cartan} {Group}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {583--593},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2018_14_4_a10/}
}
TY  - JOUR
AU  - Yu. L. Sachkov
TI  - Optimal Bang-Bang Trajectories in Sub-Finsler Problem on the Cartan Group
JO  - Russian journal of nonlinear dynamics
PY  - 2018
SP  - 583
EP  - 593
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2018_14_4_a10/
LA  - en
ID  - ND_2018_14_4_a10
ER  - 
%0 Journal Article
%A Yu. L. Sachkov
%T Optimal Bang-Bang Trajectories in Sub-Finsler Problem on the Cartan Group
%J Russian journal of nonlinear dynamics
%D 2018
%P 583-593
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2018_14_4_a10/
%G en
%F ND_2018_14_4_a10
Yu. L. Sachkov. Optimal Bang-Bang Trajectories in Sub-Finsler Problem on the Cartan Group. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 4, pp. 583-593. http://geodesic.mathdoc.fr/item/ND_2018_14_4_a10/