Synchronization of Chimera States in Coupled Networks of Nonlinear Chaotic Oscillators
Russian journal of nonlinear dynamics, Tome 14 (2018) no. 4, pp. 419-433.

Voir la notice de l'article provenant de la source Math-Net.Ru

Effects of synchronization of chimera states are studied numerically in a two-layer network of nonlocally coupled nonlinear chaotic discrete-time systems. Each layer represents a ring of nonlocally coupled logistic maps in the chaotic mode. A control parameter mismatch is introduced to realize distinct spatiotemporal structures in isolated ensembles. We consider external synchronization of chimeras for unidirectional intercoupling and mutual synchronization in the case of bidirectional intercoupling. Synchronization is quantified by calculating the crosscorrelation coefficient between the symmetric elements of the interacting networks. The same quantity is used to determine finite regions of synchronization inside which the cross-correlation coefficient is equal to 1. The identity of synchronous structures and the existence of finite synchronization regions are necessary and sufficient conditions for establishing the synchronization effect. It is also shown that our results are qualitatively similar to the synchronization of periodic self-sustained oscillations.
Keywords: multilayer networks, nonlocal coupling, chimera states, synchronization.
@article{ND_2018_14_4_a0,
     author = {A. V. Bukh and G. I. Strelkova and V. S. Anishchenko},
     title = {Synchronization of {Chimera} {States} in {Coupled} {Networks} of {Nonlinear} {Chaotic} {Oscillators}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {419--433},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2018_14_4_a0/}
}
TY  - JOUR
AU  - A. V. Bukh
AU  - G. I. Strelkova
AU  - V. S. Anishchenko
TI  - Synchronization of Chimera States in Coupled Networks of Nonlinear Chaotic Oscillators
JO  - Russian journal of nonlinear dynamics
PY  - 2018
SP  - 419
EP  - 433
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2018_14_4_a0/
LA  - en
ID  - ND_2018_14_4_a0
ER  - 
%0 Journal Article
%A A. V. Bukh
%A G. I. Strelkova
%A V. S. Anishchenko
%T Synchronization of Chimera States in Coupled Networks of Nonlinear Chaotic Oscillators
%J Russian journal of nonlinear dynamics
%D 2018
%P 419-433
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2018_14_4_a0/
%G en
%F ND_2018_14_4_a0
A. V. Bukh; G. I. Strelkova; V. S. Anishchenko. Synchronization of Chimera States in Coupled Networks of Nonlinear Chaotic Oscillators. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 4, pp. 419-433. http://geodesic.mathdoc.fr/item/ND_2018_14_4_a0/

[1] Afraimovich, V. S., Nekorkin, V. I., Osipov, G. V., and Shalfeev, V. D., Stability, Structures and Chaos in Nonlinear Synchronization Network, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 6, World Sci., Singapore, 1994, xii+246 pp. | MR

[2] Nekorkin, V. I. and Velarde, M. G., Synergetic Phenomena in Active Lattices: Patterns, Waves, Solitons, Chaos, Springer, Berlin, 2002, xviii+357 pp. | MR | Zbl

[3] Osipov, G., Kurths, J., and Zhou, C., Synchronization in Oscillatory Networks, Springer, Berlin, 2007, XIV, 370 pp. | MR | Zbl

[4] Pikovsky, A., Rosenblum, M., and Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Univ. Press, New York, 2001, 432 pp. | MR | Zbl

[5] Nekorkin, V. I. and Makarov, V. A., “Spatial Chaos in a Chain of Coupled Bistable Oscillators”, Phys. Rev. Lett., 74:24 (1995), 4819–4822 | DOI

[6] Nekorkin, V. I., Kazantsev, V. B., and Velarde, M. G., “Mutual Synchronization of Two Lattices of Bistable Elements”, Phys. Lett. A, 236:5–6 (1997), 505–512 | DOI

[7] Nekorkin, V. I., Voronin, M. L., and Velarde, M. G., “Clusters in an Ensemble of Globally Coupled Bistable Oscillators”, Eur. Phys. J. B, 9:3 (1999), 533–543 | DOI

[8] Belykh, V. N., Belykh, I. V., and Hasler, M., “Hierarchy and Stability of Partially Synchronous Oscillations of Diffusively Coupled Dynamical Systems”, Phys. Rev. E (3), 62:5 (2000), A, 6332–6345 | DOI | MR

[9] Belykh, V. N., Belykh, I. V., and Mosekilde, E., “Cluster Synchronization Modes in an Ensemble of Coupled Chaotic Oscillators”, Phys. Rev. E, 63:3 (2001), 036216, 4 pp. | DOI | MR

[10] Akopov, A., Astakhov, V., Vadivasova, T., Shabunin, A., and Kapitaniak, T., “Frequency Synchronization of Clusters in Coupled Extended Systems”, Phys. Lett. A, 334:2–3 (2005), 169–172 | DOI | Zbl

[11] Pecora, L. M., Sorrentino, F., Hagerstrom, A. M., Murphy, Th. E., and Roy, R., “Symmetries, Cluster Synchronization, and Isolated Desynchronization in Complex Networks”, Nat. Commun., 5 (2014), 4079, 8 pp. | DOI

[12] Kuramoto, Y. and Battogtokh, D., “Coexistence of Coherence and Incoherence in Nonlocally Coupled Phase Oscillators”, Nonlinear Phenomena in Complex Systems, 5:4 (2002), 380–385

[13] Abrams, D. M. and Strogatz, S. H., “Chimera States for Coupled Oscillators”, Phys. Rev. Lett., 93:17 (2004), 174102, 4 pp. | DOI

[14] Panaggio, M. J. and Abrams, D. M., “Chimera States: Coexistence of Coherence and Incoherence in Networks of Coupled Oscillators”, Nonlinearity, 28:3 (2015) | DOI | MR | Zbl

[15] Waller, I. and Kapral, R., “Spatial and Temporal Structure in Systems of Coupled Nonlinear Oscillators”, Phys. Rev. A, 30:4 (1984), 2047–2055 | DOI | MR

[16] Kaneko, K., “Pattern Dynamics in Spatiotemporal Chaos: Pattern Selection, Diffusion of Defect and Pattern Competition Intermittency”, Phys. D, 34:1–2 (1989), 1–41 | DOI | MR | Zbl

[17] Astakhov, V. V., Anishchenko, V. S., and Shabunin, A.V., “Controlling Spatiotemporal Chaos in a Chain of the Coupled Logistic Maps”, IEEE Trans. Circuits Syst. I, 42:6 (1995), 352–357 | DOI

[18] Anishchenko, V. S., Astakhov, V. V., Neiman, A. B., Vadivasova, T. E., and Schimansky-Geier, L., Nonlinear Dynamics of Chaotic and Stochastic Systems: Tutorial and Modern Developments, 2nd ed., Springer, Berlin, 2007, 446 pp. | MR | Zbl

[19] Abrams, D. M., Mirollo, R., Strogatz, S. H., and Wiley, D. A., “Solvable Model for Chimera States of Coupled Oscillators”, Phys. Rev. Lett., 101:8 (2008), 084103, 4 pp. | DOI

[20] Laing, C. R., “Chimeras in Networks of Planar Oscillators”, Phys. Rev. E (3), 81:6 (2010), 066221, 4 pp. | DOI | MR

[21] Laing, C. R., “Fronts and Bumps in Spatially Extended Kuramoto Networks”, Phys. D, 240:24 (2011), 1960–1971 | DOI | Zbl

[22] Martens, E. A., Laing, C. R., and Strogatz, S. H., “Solvable Model of Spiral Wave Chimeras”, Phys. Rev. Lett., 104:4 (2010), 044101, 4 pp. | DOI

[23] Motter, A. E., “Nonlinear Dynamics: Spontaneous Synchrony Breaking”, Nat. Phys., 6 (2010), 164–165 | DOI

[24] Wolfrum, M. and Omel'chenko, O. E., “Chimera States Are Chaotic Transients”, Phys. Rev. E, 84:1 (2011), 015201(R), 4 pp. | DOI

[25] Omelchenko, I., Maistrenko, Yu., Hövel, P., and Schöll, E., “Loss of Coherence in Dynamical Networks: Spatial Chaos and Chimera States”, Phys. Rev. Lett., 106:23 (2011), 234102, 4 pp. | DOI

[26] Omelchenko, I., Riemenschneider, B., Hövel, Ph., and Schöll, E., “Transition from Spatial Coherence to Incoherence in Coupled Chaotic Systems”, Phys. Rev. E, 85:2 (2012), 026212, 9 pp. | DOI | MR

[27] Maistrenko, Yu. L., Vasylenko, A., Sudakov, O., Levchenko, R., and Maistrenko, V. L., “Cascades of Multiheaded Chimera States for Coupled Phase Oscillators”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24:8 (2014), 1440014, 17 pp. | DOI | MR | Zbl

[28] Zakharova, A., Kapeller, M., and Schöll, E., “Chimera Death: Symmetry Breaking in Dynamical Networks”, Phys. Rev. Lett., 112:15 (2014), 154101, 5 pp. | DOI

[29] Yeldesbay, A., Pikovsky, A., and Rosenblum, M., “Chimeralike States in an Ensemble of Globally Coupled Oscillators”, Phys. Rev. Lett., 112:14 (2014), 144103, 5 pp. | DOI

[30] Dudkowski, D., Maistrenko, Yu., and Kapitaniak, T., “Different Types of Chimera States: An Interplay between Spatial and Dynamical Chaos”, Phys. Rev. E, 90:3 (2014), 032920, 5 pp. | DOI

[31] Semenova, N., Zakharova, A., Schöll, E., and Anishchenko, V., “Does Hyperbolicity Impede Emergence of Chimera States in Networks of Nonlocally Coupled Chaotic Oscillators?”, Europhys. Lett., 112:4 (2015), 40002, 6 pp. | DOI | MR

[32] Olmi, S., Martens, E. A., Thutupalli, S., and Torcini, A., “Intermittent Chaotic Chimeras for Coupled Rotators”, Phys. Rev. E, 92:3 (2015), 030901, 6 pp. | DOI

[33] Hizanidis, J., Panagakou, E., Omelchenko, I., Schöll, E., Hövel, Ph., and Provata, A., “Chimera States in Population Dynamics: Networks with Fragmented and Hierarchical Connectivities”, Phys. Rev. E, 92:1 (2015), 012915, 11 pp. | DOI | MR

[34] Vadivasova, T. E., Strelkova, G. I., Bogomolov, S. A., and Anishchenko, V. S., “Correlation Analysis of the Coherence-Incoherence Transition in a Ring of Nonlocally Coupled Logistic Maps”, Chaos, 26:9 (2016), 093108, 9 pp. | DOI | MR

[35] Kemeth, F. P., Haugland, S. W., Schmidt, L., Kevrekidis, I. G., and Krischer, K., “A Classification Scheme for Chimera States”, Chaos, 26:9 (2016), 094815, 8 pp. | DOI

[36] Ulonska, S., Omelchenko, I., Zakharova, A., and Schöll, E., “Chimera States in Networks of van der Pol Oscillators with Hierarchical Connectivities”, Chaos, 26:9 (2016), 094825, 9 pp. | DOI | MR

[37] Semenova, N., Zakharova, A., Anishchenko, V., and Schöll, E., “Coherence-Resonance Chimeras in a Network of Excitable Elements”, Phys. Rev. Lett., 117:1 (2016), 014102, 6 pp. | DOI

[38] Schöll, E., “Synchronization patterns and chimera states in complex networks: Interplay of topology and dynamics”, Eur. Phys. J. Spec. Top., 225:6–7 (2016), 891–919 | DOI

[39] Semenov, V., Zakharova, A., Maistrenko, Yu., and Schöll, E., “Delayed-Feedback Chimera States: Forced Multiclusters and Stochastic Resonance”, Europhys. Lett., 115:1 (2016), 10005, 6 pp. | DOI | MR

[40] Sawicki, J., Omelchenko, I., Zakharova, A., and Schöll, E., “Chimera States in Complex Networks: Interplay of Fractal Topology and Delay”, Eur. Phys. J. Spec. Top., 226:9 (2017), 1883–1892 | DOI

[41] Rybalova, E., Semenova, N., Strelkova, G., and Anishchenko, V., “Transition from Complete Synchronization to Spatio-Temporal Chaos in Coupled Chaotic Systems with Nonhyperbolic and Hyperbolic Attractors”, Eur. Phys. J. Spec. Top., 226:9 (2017), 1857–1866 | DOI

[42] Semenova, N. I., Strelkova, G. I., Anishchenko, V. S., and Zakharova, A., “Temporal Intermittency and the Lifetime of Chimera States in Ensembles of Nonlocally Coupled Chaotic Oscillators”, Chaos, 27:6 (2017), 061102, 6 pp. | DOI | MR | Zbl

[43] Bogomolov, S. A., Slepnev, A. V., Strelkova, G. I., Schöll, E., and Anishchenko, V. S., “Mechanisms of Appearance of Amplitude and Phase Chimera States in Ensembles of Nonlocally Coupled Chaotic Systems”, Commun. Nonlinear Sci. Numer. Simul., 43 (2016), 25–36 | DOI | MR

[44] Santos, M. S., Szezezh, J. D., Jr., Batista, A. M., Caldas, I. L., Viana, R. L., and Lopes, S. R., “Recurrence Quantification Analysis of Chimera States”, Phys. Lett. A, 379:37 (2015), 2188–2192 | DOI

[45] Zakharova, A., Semenova, N., Anishchenko, V., and Schöll, E., “Time-Delayed Feedback Control of Coherence Resonance Chimeras”, Chaos, 27:11 (2017), 114320, 9 pp. | DOI | MR | Zbl

[46] Shepelev, I. A., Bukh, A. V., Vadivasova, T. E., Anishchenko, V. S., and Zakharova, A., “Double-Well Chimeras in $2$D Lattice of Chaotic Bistable Elements”, Commun. Nonlinear Sci. Numer. Simul., 54 (2018), 50–61 | DOI | MR

[47] Hagerstrom, A. M., Murphy, T. E., Roy, R., Hövel, P., Omelchenko, I., and Schöll, E., “Experimental Observation of Chimeras in Coupled-Map Lattices”, Nat. Phys., 8 (2012), 658–661 | DOI

[48] Tinsley, M. R., Nkomo, S., and Showalter, K., “Chimera and Phase Cluster States in Populations of Coupled Chemical Oscillators”, Nat. Phys., 8 (2012), 662–665 | DOI

[49] Larger, L., Penkovsky, B., and Maistrenko, Yu., “Virtual Chimera States for Delayed-Feedback Systems”, Phys. Rev. Lett., 111:5 (2013), 054103, 5 pp. | DOI

[50] Martens, E. A., Thutupalli, S., Fourrière, A., and Hallatschek, O., “Chimera States in Mechanical Oscillator Networks”, Proc. Natl. Acad. Sci. USA, 110:26 (2013), 10563–10567 | DOI

[51] Kapitaniak, T., Kuzma, P., Wojewoda, J., Czolczynski, K., and Maistrenko, Yu., “Imperfect Chimera States for Coupled Pendula”, Sci. Rep., 4 (2014), 6379, 4 pp. | DOI

[52] Larger, L., Penkovsky, B., and Maistrenko, Yu., “Laser Chimeras As a Paradigm for Multistable Patterns in Complex Systems”, Nat. Commun., 6 (2015), 7752 | DOI

[53] Watanabe, S., Strogatz, S. H., van der Zant, H. S. J., and Orlando, T. P., “Whirling Modes and Parametric Instabilities in the Discrete sine-Gordon Equation: Experimental Tests in Josephson Rings”, Phys. Rev. Lett., 74:3 (1995), 379–382 | DOI

[54] Li, R. D. and Erneux, T., “Bifurcation to Standing and Traveling Waves in Large Arrays of Coupled Lasers”, Phys. Rev. A, 49:2 (1993), 1301–1312

[55] Hizanidis, J., Kouvaris, N. E., Zamora-López, G., Díaz-Guilera, A., and Antonopoulos, C. G., “Chimera-Like States in Modular Neural Networks”, Sci. Rep., 6 (2016), 19845, 10 pp. | DOI

[56] Rattenborg, N. C., Amlaner, C. J., and Lima, S. L., “Behavioral, Neurophysiological and Evolutionary Perspectives on Unihemispheric Sleep”, Neurosci. Biobehav. Rev., 24:8 (2000), 817–842 | DOI

[57] Motter, A. E., Myers, S. A., Anghel, M., and Nishikawa, T., “Spontaneous Synchrony in Power-Grid Networks”, Nat. Phys., 9 (2013), 191–197 | DOI

[58] Nishikawa, T. and Motter, A. E., “Comparative Analysis of Existing Models for Power-Grid Synchronization”, New J. Phys., 17 (2015), 015012, 36 | DOI | MR

[59] Boccaletti, S., Bianconi, G., Criado, R., del Genio, C. I., Gómez-Gardeñes, G., Romance, M., Sendiña-Nadal, I., Wang, Z., and Zanin, M., “The Structure and Dynamics of Multilayer Networks”, Phys. Rep., 544:1 (2014), 1–122 | DOI | MR

[60] Majhi, S., Perc, M., and Ghosh, D., “Chimera States in Uncoupled Neurons Induced by a Multilayer Structure”, Sci. Rep., 6 (2016), 39033, 10 pp. | DOI

[61] Maksimenko, V. A., Makarov, V. V., Bera, B. K., Ghosh, D., Dana, S. K., Goremyko, M. V., Frolov, N. S., Koronovskii, A. A., and Hramov, A. E., “Excitation and Suppression of Chimera States by Multiplexing”, Phys. Rev. E, 94:5 (2016), 052205, 9 pp. | DOI

[62] Ghosh, S., Kumar, A., Zakharova, A., and Jalan, S., “Birth and Death of Chimera: Interplay of Delay and Multiplexing”, Europhys. Lett., 115:6 (2016), 60005, 7 pp. | DOI | MR

[63] Majhi, S., Perc, M., and Ghosh, D., “Chimera States in a Multilayer Network of Coupled and Uncoupled Neurons”, Chaos, 27:7 (2017), 073109, 10 pp. | DOI | MR

[64] Pecora, L. M. and Carroll, Th. L., “Synchronization in Chaotic Systems”, Phys. Rev. Lett., 64:8 (1990), 821–824 | DOI | MR | Zbl

[65] Rulkov, N. F., Sushchik, M. M., Tsimring, L. S., and Abarbanel, H. D. I., “Generalized Synchronization of Chaos in Directionally Coupled Chaotic Systems”, Phys. Rev. E, 51:2 (1995), 980–994 | DOI | MR

[66] Rosenblum, M. G., Pikovsky, A. S., and Kurths, J., “Phase Synchronization of Chaotic Oscillators”, Phys. Rev. Lett., 76:11 (1996), 1804–1807 | DOI | MR

[67] Kocarev, L. and Parlitz, U., “Generalized Synchronization, Predictability and Equivalence of Unidirectionally Coupled Systems”, Phys. Rev. Lett., 76:11 (1996), 1816–1819 | DOI | MR

[68] Li, C., Sun, W., and Kurths, J., “Synchronization between Two Coupled Complex Networks”, Phys. Rev. E, 76:4 (2007), 046204, 6 pp. | DOI

[69] Tang, H., Chen, L., Lu, J., and Tse, C. K., “Adaptive Synchronization between Two Complex Networks with Nonidentical Topological Structures”, Phys. A, 387:22 (2008), 5623–5630 | DOI

[70] Wu, X., Zheng, W. X., and Zhou, J., “Generalized outer Synchronization between Complex Dynamical Networks”, Chaos, 19:1 (2009), 013109, 9 pp. | DOI | MR | Zbl

[71] Wu, Y., Li, C., Wu, X., and Kurths, J., “Generalized Synchronization between Two Different Complex Networks”, Commun. Nonlinear Sci. Numer. Simul., 17:1 (2012), 349–355 | DOI | MR | Zbl

[72] Andrzejak, R. G., Ruzzene, G., and Malvestio, I., “Generalized Synchronization between Chimera States”, Chaos, 27:5 (2017), 053114, 6 pp. | DOI | MR | Zbl

[73] Bukh, A., Rybalova, E., Semenova, N., Strelkova, G., and Anishchenko, V., “New Type of Chimera and Mutual Synchronization of Spatiotemporal Structures in Two Coupled Ensembles of Nonlocally Coupled Interacting Chaotic Maps”, Chaos, 27:11 (2017), 111102, 7 pp. | DOI | MR | Zbl