Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2018_14_3_a9, author = {O. M. Kiselev}, title = {Stable {Feedback} {Control} of a {Fast} {Wheeled} {Robot}}, journal = {Russian journal of nonlinear dynamics}, pages = {409--417}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2018_14_3_a9/} }
O. M. Kiselev. Stable Feedback Control of a Fast Wheeled Robot. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 3, pp. 409-417. http://geodesic.mathdoc.fr/item/ND_2018_14_3_a9/
[1] Sachkov, Yu. L., “Conjugate and Cut Time in the Sub-Riemannian Problem on the Group of Motions of a Plane”, ESAIM Control Optim. Calc. Var., 16 (2010), 1018–1039 | DOI | MR | Zbl
[2] Campion, G., Bastin, G., and d'Andréa-Novel, B., “Structural Properties and Classification of Kinematic and Dynamic Models of Wheeled Mobile Robots”, IEEE Trans. Robot. Autom., 12:1 (1996), 47–62 | DOI
[3] Fundam. Prikl. Mat., 11:8 (2005), 29–80 (Russian) | DOI | MR | Zbl
[4] Walsh, G., Tilbury, D., Sastry, S., Murray, R., and Laumond, J. P., “Stabilization of Trajectories for Systems with Nonholonomic Constrains”, IEEE Trans. Automat. Control, 39:1 (1994), 216–222 | DOI | MR | Zbl
[5] Ollero, A. and Heredia, G., “Stability Analysis of Mobile Robot Path Tracking”, Proc. of the 1995 IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots (Pittsburgh, PA, USA (5-9 Aug. 1995)), v. 3, 461–466