@article{ND_2018_14_3_a9,
author = {O. M. Kiselev},
title = {Stable {Feedback} {Control} of a {Fast} {Wheeled} {Robot}},
journal = {Russian journal of nonlinear dynamics},
pages = {409--417},
year = {2018},
volume = {14},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ND_2018_14_3_a9/}
}
O. M. Kiselev. Stable Feedback Control of a Fast Wheeled Robot. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 3, pp. 409-417. http://geodesic.mathdoc.fr/item/ND_2018_14_3_a9/
[1] Sachkov, Yu. L., “Conjugate and Cut Time in the Sub-Riemannian Problem on the Group of Motions of a Plane”, ESAIM Control Optim. Calc. Var., 16 (2010), 1018–1039 | DOI | MR | Zbl
[2] Campion, G., Bastin, G., and d'Andréa-Novel, B., “Structural Properties and Classification of Kinematic and Dynamic Models of Wheeled Mobile Robots”, IEEE Trans. Robot. Autom., 12:1 (1996), 47–62 | DOI
[3] Fundam. Prikl. Mat., 11:8 (2005), 29–80 (Russian) | DOI | MR | Zbl
[4] Walsh, G., Tilbury, D., Sastry, S., Murray, R., and Laumond, J. P., “Stabilization of Trajectories for Systems with Nonholonomic Constrains”, IEEE Trans. Automat. Control, 39:1 (1994), 216–222 | DOI | MR | Zbl
[5] Ollero, A. and Heredia, G., “Stability Analysis of Mobile Robot Path Tracking”, Proc. of the 1995 IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots (Pittsburgh, PA, USA (5-9 Aug. 1995)), v. 3, 461–466