Stable Feedback Control of a Fast Wheeled Robot
Russian journal of nonlinear dynamics, Tome 14 (2018) no. 3, pp. 409-417.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain criteria for the stability of fast straight-line motion of a wheeled robot using proportional or proportional derivative feedback control. The motion of fast robots with discrete feedback control is defined by the discrete dynamical system. The stability criteria are obtained for the discrete system for proportional and proportional-derivative feedback control.
Keywords: feedback control, stability, robotics.
@article{ND_2018_14_3_a9,
     author = {O. M. Kiselev},
     title = {Stable {Feedback} {Control} of a {Fast} {Wheeled} {Robot}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {409--417},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2018_14_3_a9/}
}
TY  - JOUR
AU  - O. M. Kiselev
TI  - Stable Feedback Control of a Fast Wheeled Robot
JO  - Russian journal of nonlinear dynamics
PY  - 2018
SP  - 409
EP  - 417
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2018_14_3_a9/
LA  - en
ID  - ND_2018_14_3_a9
ER  - 
%0 Journal Article
%A O. M. Kiselev
%T Stable Feedback Control of a Fast Wheeled Robot
%J Russian journal of nonlinear dynamics
%D 2018
%P 409-417
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2018_14_3_a9/
%G en
%F ND_2018_14_3_a9
O. M. Kiselev. Stable Feedback Control of a Fast Wheeled Robot. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 3, pp. 409-417. http://geodesic.mathdoc.fr/item/ND_2018_14_3_a9/

[1] Sachkov, Yu. L., “Conjugate and Cut Time in the Sub-Riemannian Problem on the Group of Motions of a Plane”, ESAIM Control Optim. Calc. Var., 16 (2010), 1018–1039 | DOI | MR | Zbl

[2] Campion, G., Bastin, G., and d'Andréa-Novel, B., “Structural Properties and Classification of Kinematic and Dynamic Models of Wheeled Mobile Robots”, IEEE Trans. Robot. Autom., 12:1 (1996), 47–62 | DOI

[3] Fundam. Prikl. Mat., 11:8 (2005), 29–80 (Russian) | DOI | MR | Zbl

[4] Walsh, G., Tilbury, D., Sastry, S., Murray, R., and Laumond, J. P., “Stabilization of Trajectories for Systems with Nonholonomic Constrains”, IEEE Trans. Automat. Control, 39:1 (1994), 216–222 | DOI | MR | Zbl

[5] Ollero, A. and Heredia, G., “Stability Analysis of Mobile Robot Path Tracking”, Proc. of the 1995 IEEE/RSJ Internat. Conf. on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots (Pittsburgh, PA, USA (5-9 Aug. 1995)), v. 3, 461–466