Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2018_14_3_a8, author = {A. S. Andreev and O. A. Peregudova}, title = {On the {Stability} and {Stabilization} {Problems} of {Volterra} {Integro-Differential} {Equations}}, journal = {Russian journal of nonlinear dynamics}, pages = {387--407}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2018_14_3_a8/} }
TY - JOUR AU - A. S. Andreev AU - O. A. Peregudova TI - On the Stability and Stabilization Problems of Volterra Integro-Differential Equations JO - Russian journal of nonlinear dynamics PY - 2018 SP - 387 EP - 407 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2018_14_3_a8/ LA - en ID - ND_2018_14_3_a8 ER -
%0 Journal Article %A A. S. Andreev %A O. A. Peregudova %T On the Stability and Stabilization Problems of Volterra Integro-Differential Equations %J Russian journal of nonlinear dynamics %D 2018 %P 387-407 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2018_14_3_a8/ %G en %F ND_2018_14_3_a8
A. S. Andreev; O. A. Peregudova. On the Stability and Stabilization Problems of Volterra Integro-Differential Equations. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 3, pp. 387-407. http://geodesic.mathdoc.fr/item/ND_2018_14_3_a8/
[1] Avtomat. i Telemekh., 2014, no. 2, 16–30 (Russian) | DOI | MR
[2] Avtomat. i Telemekh., 1989, no. 9, 34–43 (Russian) | MR
[3] Prikl. Mat. Mekh., 48:2 (1984), 225–232 (Russian) | DOI | MR
[4] Avtomat. i Telemekh., 2009, no. 9, 4–-55 (Russian) | DOI | MR | Zbl
[5] Dokl. Akad. Nauk, 400:5 (2005), 621–624 (Russian) | DOI | MR
[6] Prikl. Mat. Mekh., 70:6 (2006), 965–976 (Russian) | DOI | MR
[7] Prikl. Mat. Mekh., 81:2 (2017), 137–153 (Russian) | DOI | MR
[8] Andreev, A. S. and Peregudova, O. A., “Non-Linear PI Regulators in Control Problems for Holonomic Mechanical Systems”, Systems Sci. Control Eng., 6:1 (2018), 12–19 | DOI
[9] Andreev, A. S., Peregudova, O. A., and Rakov, S. Yu., “On Modeling a Nonlinear Integral Regulator on the Base of the Volterra Equations”, Zh. Srednevolzhsk. Mat. Obshch., 18:3 (2016), 8–18 (Russian) | MR
[10] Åström, K. J. and Hägglund, T., Advaced PID Control, ISA, Research Triangle Park, N.C., 2006, 460 pp.
[11] Athanassov, Zh. S., “Families of Liapunov – Krasovskii Functionals and Stability for Functional Differential Equations”, Ann. Mat. Pura Appl. (4), 176 (1999), 145–165 | DOI | MR | Zbl
[12] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “Dynamics and Control of an Omniwheel Vehicle”, Regul. Chaotic Dyn., 20:2 (2015), 153–172 | DOI | MR | Zbl
[13] Burton, T. A., “Stability Theory for Delay Equations”, Funkcial. Ekvac., 22:1 (1979), 67–76 | MR | Zbl
[14] Burton, T. A., Volterra Integral and Differential Equations, Math. Sci. Eng., 202, 2nd ed., Elsevier, Amsterdam, 2005, x+353 pp. | MR | Zbl
[15] Burton, T. A. and Zhang, S. N., “Unified Boundedness, Periodicity, and Stability in Ordinary and Functional-Differential Equations”, Ann. Mat. Pura Appl. (4), 145 (1986), 129–158 | DOI | MR | Zbl
[16] Bykov, Ya. V., On Some Problems of the Theory of Integro-Differential Equations, KGU, Frunze, 1957, 327 pp. (Russian)
[17] Coleman, B. D. and Dill, E. H., “On the Stability of Certain Motions of Incompressible Materials with Memory”, Arch. Rational Mech. Anal., 30:3 (1968), 197–224 | DOI | MR | Zbl
[18] Coleman, B. D. and Mizel, V. J., “On the Stability of Solutions of Functional Differential Equations”, Arch. Rational Mech. Anal., 30:3 (1968), 173–196 | DOI | MR | Zbl
[19] Coleman, B. D. and Owen, D. R., “On the Initial Value Problem for a Class of Functional-Differential Equations”, Arch. Rational Mech. Anal., 55:4 (1974), 275–299 | DOI | MR | Zbl
[20] Corduneanu, C. and Lakshmikantham, V., “Equations with Unbounded Delay: A Survey”, Nonlinear Anal., 4:5 (1980), 831–877 | DOI | MR | Zbl
[21] Haddock, J., Krisztin, T., and Terjéki, J., “Invariance Principles for Autonomous Functional-Differential Equations”, J. Integral Equations, 10:1–3, suppl. (1985), 123–136 | MR | Zbl
[22] Haddock, J. and Terjéki, J., “On the Location of Positive Limit Sets for Autonomous Functional Differential Equations with Infinite Delay”, J. Differential Equations, 86:1 (1990), 1–32 | DOI | MR | Zbl
[23] Filatov, A. N., Averaging Methods in Differential and Integro-Differential Equations, Fan, Tashkent, 1971, 279 pp. (Russian) | MR | Zbl
[24] Hale, J. K., “Sufficient Conditions for the Stability and Instability of Autonomous Functional Differential Equations”, J. Differential Equations, 1:4 (1965), 452–482 | DOI | MR | Zbl
[25] Hale, J. K., Theory of Functional Differential Equations, Appl. Math. Sci., 3, Springer, New York, 1977, X, 366 pp. | DOI | MR | Zbl
[26] Hale, J. K. and Kato, J., “Phase Space for Retarded Equations with Infinite Delay”, Funkcial. Ekvac., 21:1 (1978), 11–41 | MR | Zbl
[27] Hino, Y., “On Stability of the Solution of Some Functional Differential Equations”, Funkcial. Ekvac., 14 (1971), 47–60 | MR | Zbl
[28] Hino, Y., “Stability Properties for Functional Differential Equations with Infinite Delay”, Tôhoku Math. J., 35:4 (1983), 597–605 | DOI | MR | Zbl
[29] Hino, Y., Murakami, S., and Naito, T., Functional Differential Equations with Infinite Delay, Lecture Notes in Math., 1473, Springer, New York, 1991, x+317 pp. | DOI | MR | Zbl
[30] Hornor, W., “Invariance Principles and Asymptotic Constancy of Solutions of Precompact Functional Differential Equations”, Tôhoku Math. J., 42:2 (1990), 217–229 | DOI | MR | Zbl
[31] Kato, J., “Stability Problems in Functional Differential Equations with Infinite Delay”, Funkcial. Ekvac., 21:1 (1978), 63–80 | MR | Zbl
[32] Kato, J., “Liapunov's Second Method in Functional Differential Equations”, Tôhoku Math. J. (2), 32:4 (1980), 487–497 | DOI | MR | Zbl
[33] Kato, J., “Asymptotic Behavior in Functional-Differential Equations with Infinite Delay”, Equadiff 82 (Würzburg, 1982), Lecture Notes in Math., 1017, Springer, Berlin, 1983, 300–312 | DOI | MR
[34] Kerimov, M. K., “A Bibliography of Some New Papers on Integral and Integro-Differential Equations”, V. Volterra. Theory of Functionals and of Integral and Integro-Differential Equations, Nauka, Moscow, 1982, 257–302 (Russian) | MR
[35] Krasovskii, N. N., Stability of Motion: Applications of Lyapunov's Second Method to Differential Systems and Equations with Delay, Stanford Univ. Press, Stanford, 1963, 192 pp. | MR | Zbl
[36] LaSalle, J., “The Extent of Asymptotic Stability”, Proc. Natl. Acad. Sci. USA, 46:3 (1960), 363–365 | DOI | MR | Zbl
[37] Makay, G., “On the Asymptotic Stability of the Solutions of Functional-Differential Equations with Infinite Delay”, J. Differential Equations, 108:1 (1994), 139–151 | DOI | MR | Zbl
[38] Prikl. Mat. Mekh., 74:4 (2010), 610–619 (Russian) | DOI | MR | Zbl
[39] Meza, J. L., Santibáñez, V., Soto, R., Perez, J., and Perez, J., “Analysis via Passivity Theory of a Class of Nonlinear PID Global Regulators for Robot Manipulators”, Advances in PID Control, ed. V. D. Yurkevich, InTech, Rijeka, 2011, 45–-64
[40] Miller, R., “Asymptotic Behavior of Solutions of Nonlinear Differential Equations”, Trans. Amer. Math. Soc., 115 (1965), 400–416 | DOI | MR | Zbl
[41] Murakami, S., “Perturbation Theorems for Functional Differential Equations with Infinite Delay via Limiting Equations”, J. Differential Equations, 59:3 (1985), 314–335 | DOI | MR | Zbl
[42] Murakami, S. and Naito, T., “Fading Memory Spaces and Stability Properties for Functional Differential Equations with Infinite Delay”, Funkcial. Ekvac., 32:1 (1989), 91–105 | MR | Zbl
[43] O’Dwyer, A., Handbook of PI and PID Controller Tuning Rules, 3rd ed., Imperial College Press, London, 2009, 624 pp.
[44] Avtomat. i Telemekh., 2007, no. 9, 16–-26 (Russian) | DOI | MR | Zbl
[45] Dokl. Akad. Nauk, 416:2 (2007), 166–168 (Russian) | DOI | MR | MR | Zbl
[46] Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 7, 29–38 (Russian) | DOI | MR | Zbl
[47] Differ. Uravn., 44:12 (2008), 1638–-1647 (Russian) | DOI | MR | Zbl
[48] Rouche, N., Habets, P., and Laloy, M., Stability Theory by Lyapunov’s Direct Method, Appl. Math. Sci., 22, Springer, New York, 1977, XII, 396 pp. | DOI | MR
[49] Sawano, K., “Exponential Asymptotic Stability for Functional-Differential Equations with Infinite Retardations”, Tôhoku Math. J. (2), 31:3 (1979), 363–382 | DOI | MR | Zbl
[50] Sawano, K., “Positively Invariant Sets for Functional Differential Equations with Infinite Delay”, Tôhoku Math. J. (2), 32:2 (1980), 557–566 | DOI | MR | Zbl
[51] Sawano, K., “Some Considerations on the Fundamental Theorems for Functional-Differential Equations with Infinite Delay”, Funkcial. Ekvac., 25:1 (1982), 97–104 | MR | Zbl
[52] Schumacher, K., “Existence and Continuous Dependence for Functional-Differential Equations with Unbounded Delay”, Arch. Rational Mech. Anal., 67:4 (1978), 315–335 | DOI | MR | Zbl
[53] Sell, G. R., Topological Dynamics and Ordinary Differential Equations, v. 33, Van Nostrand Reinhold Mathematical Studies, Van Nostrand Reinhold, London, 1971 | MR | Zbl
[54] Prikl. Mat. Mekh., 64:2 (2000), 219–228 (Russian) | DOI | MR | Zbl
[55] Sergeev, V. S., “Stability of Solutions of Volterra Integrodifferential Equations”, Math. Comput. Modelling, 45:11–12 (2007), 1376–-1394 | DOI | MR | Zbl
[56] Prikl. Mat. Mekh., 79:5 (2015), 615–626 (Russian) | DOI | MR
[57] Volterra, V., Theory of Functionals and of Integral and Integro-Differential Equations, Dover, New York, 1959 | MR | Zbl
[58] Wakeman, D. R., “An Application of Topological Dynamics to Obtain a New Invariance Property for Nonautonomous Ordinary Differential Equations”, J. Differential Equations, 17 (1975), 259–295 | DOI | MR | Zbl