Increase in the Accuracy of the Parameters Identification for a Vibrating Ring Microgyroscope Operating in the Forced Oscillation Mode with Nonlinearity Taken into Account
Russian journal of nonlinear dynamics, Tome 14 (2018) no. 3, pp. 377-386.

Voir la notice de l'article provenant de la source Math-Net.Ru

The dynamics of a vibrating ring microgyroscope operating in the forced oscillation mode is investigated. The elastic and viscous anisotropy of the resonator and the nonlinearity of oscillations are taken into consideration. Additional nonlinear terms are suggested for the mathematical model of resonator dynamics. In addition to cubic nonlinearity, nonlinearity of the fifth degree is considered. By using the Krylov – Bogolyubov averaging method, equations containing parameters characterizing damping, elastic and viscous anisotropy, as well as coefficients of oscillation nonlinearity are deduced. The parameter identification problem is reduced to solving an overdetermined system of algebraic equations that are linear in the parameters to be identified. The proposed identification method allows testing at large oscillation amplitudes corresponding to a sufficiently high signal-to-noise ratio. It is shown that taking nonlinearities into account significantly increases the accuracy of parameter identification in the case of large oscillation amplitudes.
Keywords: parameter identification, vibrating ring microgyroscope, nonlinear oscillations.
@article{ND_2018_14_3_a7,
     author = {D. A. Maslov and I. V. Merkuryev},
     title = {Increase in the {Accuracy} of the {Parameters} {Identification} for a {Vibrating} {Ring} {Microgyroscope} {Operating} in the {Forced} {Oscillation} {Mode} with {Nonlinearity} {Taken} into {Account}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {377--386},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2018_14_3_a7/}
}
TY  - JOUR
AU  - D. A. Maslov
AU  - I. V. Merkuryev
TI  - Increase in the Accuracy of the Parameters Identification for a Vibrating Ring Microgyroscope Operating in the Forced Oscillation Mode with Nonlinearity Taken into Account
JO  - Russian journal of nonlinear dynamics
PY  - 2018
SP  - 377
EP  - 386
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2018_14_3_a7/
LA  - en
ID  - ND_2018_14_3_a7
ER  - 
%0 Journal Article
%A D. A. Maslov
%A I. V. Merkuryev
%T Increase in the Accuracy of the Parameters Identification for a Vibrating Ring Microgyroscope Operating in the Forced Oscillation Mode with Nonlinearity Taken into Account
%J Russian journal of nonlinear dynamics
%D 2018
%P 377-386
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2018_14_3_a7/
%G en
%F ND_2018_14_3_a7
D. A. Maslov; I. V. Merkuryev. Increase in the Accuracy of the Parameters Identification for a Vibrating Ring Microgyroscope Operating in the Forced Oscillation Mode with Nonlinearity Taken into Account. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 3, pp. 377-386. http://geodesic.mathdoc.fr/item/ND_2018_14_3_a7/

[1] Zhuravlev, V. F. and Klimov, D. M., Wave Solid State Gyroscope, Nauka, Moscow, 1985, 126 pp. (Russian)

[2] Izv. Akad. Nauk. Mekh. Tverd. Tela, 1993, no. 3, 15–26

[3] Izv. Akad. Nauk. Mekh. Tverd. Tela, 1997, no. 6, 27–35 (Russian) | MR

[4] Izv. Ross. Akad. Nauk. Mekh. Tverd. Tela, 2000, no. 5, 186–192 (Russian) | Zbl

[5] Izv. Akad. Nauk. Mekh. Tverd. Tela, 1998, no. 4, 4–16 (Russian)

[6] Matveyev, V. A., Lipatnikov, V. I., and Alekhin, A. V., Design of a Wave Solid-State Gyroscope, MGTU, Moscow, 1998, 168 pp. (Russian)

[7] Merkuryev, I. V. and Podalkov, V. V., Dynamics of the Micromechanical and Wave Solid-State Gyroscopes, Fizmatlit, Moscow, 2009, 228 pp. (Russian)

[8] Gavrilenko, A. B., Merkuryev, I. V., and Podalkov, V. V., “Experimental Methods for the Determination Viscoelastic Anisotropy Parameters of the Wave Solid-State Gyroscope Resonator”, Vestn. MPEI, 15:5 (2010), 13–19 (Russian)

[9] De, S. K. and Aluru, N. R., “Complex Nonlinear Oscillations in Electrostatically Actuated Microstructures”, J. Microelectromech. Syst., 15:2 (2006), 355–369 | DOI

[10] Rhoads, J. F., Shaw, S. W., Turner, K. L., Moehlis, J., DeMartini, B. E., and Zhang, W., “Generalized Parametric Resonance in Electrostatically Actuated Microelectromechanical Oscillators”, J. Sound Vibration, 296:4–5 (2006), 797–829 | DOI

[11] Chavarette, F. R., Balthazar, J. M., Guilherme, I. R., do Nascimento, O. S., and Peruzzi, N. J., “A Reducing of Chaotic Behavior to a Periodic Orbit, of a Combdriver Drive System (MEMS) Using Particle Swarm Optimization”, Proc. of the 9th Brazilian Conf. on Dynamics Control and Their Applications (Serra Negra, 2010), 378–383

[12] Maslov, A. A., Maslov, D. A., and Merkurev, I. V., “Parameter Identification of Hemispherical Resonator Gyro with the Nonlinearity of the Resonator”, Pribory i Sistemy. Upravlenie, Kontrol, Diagnostika, 2014, no. 5, 18–23 (Russian)

[13] Giroskopiya i Navigatsiya, 2015, no. 1, 71–80 (Russian) | DOI | DOI | MR

[14] Bogolubov, N. N. and Mitropolskiy, Yu. A., Asymptotic Methods in the Theory of Nonlinear Oscillations, Nauka, Moscow, 1974, 503 pp. (Russian) | MR

[15] Ivchenko, G. I. and Medvedev, Yu. I., Introduction to Mathematical Statistics, 2nd ed., URSS, Moscow, 2017, 608 pp. (Russian) | MR

[16] Gavrilenko, A. B., Merkuryev, I. V., Podalkov, V. V., and Sbytova, E. S., Micromechanical Systems Dynamics, MPEI, Moscow, 2016, 60 pp. (Russian)

[17] Raspopov, V. Ya. and Yershov, R. V., “Solid-State Wave Gyroscopes with Ring Resonator”, Datchiki i Sistemy, 2009, no. 5, 61–72 (Russian)

[18] Maslov, D. A. and Merkuryev, I. V., “Compensation of Errors Taking into Account Nonlinear Oscillations of the Vibrating Ring Microgyroscope Operating in the Angular Velocity Sensor Mode”, Nelin. Dinam., 13:2 (2017), 227–241 (Russian) | DOI | MR