On Synchronization of Quasiperiodic Oscillations
Russian journal of nonlinear dynamics, Tome 14 (2018) no. 3, pp. 367-376.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the role of quasi-periodic perturbations in systems close to two-dimensional Hamiltonian ones. Similarly to the problem of the influence of periodic perturbations on a limit cycle, we consider the problem of the passage of an invariant torus through a resonance zone. The conditions for synchronization of quasi-periodic oscillations are established. We illustrate our results using the Duffing –Van der Pol equation as an example.
Keywords: resonances, quasi-periodic, periodic, synchronization, averaged system, phase curves, equilibrium states.
@article{ND_2018_14_3_a6,
     author = {A. D. Morozov and K. E. Morozov},
     title = {On {Synchronization} of {Quasiperiodic} {Oscillations}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {367--376},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2018_14_3_a6/}
}
TY  - JOUR
AU  - A. D. Morozov
AU  - K. E. Morozov
TI  - On Synchronization of Quasiperiodic Oscillations
JO  - Russian journal of nonlinear dynamics
PY  - 2018
SP  - 367
EP  - 376
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2018_14_3_a6/
LA  - en
ID  - ND_2018_14_3_a6
ER  - 
%0 Journal Article
%A A. D. Morozov
%A K. E. Morozov
%T On Synchronization of Quasiperiodic Oscillations
%J Russian journal of nonlinear dynamics
%D 2018
%P 367-376
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2018_14_3_a6/
%G en
%F ND_2018_14_3_a6
A. D. Morozov; K. E. Morozov. On Synchronization of Quasiperiodic Oscillations. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 3, pp. 367-376. http://geodesic.mathdoc.fr/item/ND_2018_14_3_a6/

[1] Andronov, A. A. and Witt, A. A., “Zur Theorie des Mitnehmens von van der Pol”, Arch. für Elektrotech., 24:1 (1930), 99–110 | DOI

[2] Morozov, A. D. and Shil'nikov, L. P., “To Mathematical Theory of Oscillatory Synchronization”, Dokl. Akad. Nauk SSSR, 223:6 (1975), 1340–1343 (Russian) | MR | Zbl

[3] Prikl. Mat. Mekh., 47:3 (1983), 385–394 (Russian) | DOI | MR

[4] Anishenko, V. S. and Nikolaev, S. M., “Experimental Research of Synchronization of Two-Frequency Quasiperiodic Motions”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 15:6 (2007), 93–101 (Russian)

[5] Differ. Uravn., 53:12 (2017), 1607–1615 | DOI | MR | Zbl

[6] Bogoliubov, N. N. and Mitropolsky, Yu. A., Asymptotic Methods in the Theory of Non-Linear Oscillations, Gordon Breach, New York, 1961, x+537 pp. | MR

[7] Mitropolsky, Yu. A. and Lykova, O. B., Integrated Manifolds in the Nonlinear Mechanics, Nauka, Moscow, 1973, 512 pp. (Russian) | MR

[8] Morozov, A. D., Quasi-Conservative Systems: Cycles, Resonances and Chaos, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 30, World Sci., River Edge, N.J., 340 pp. | MR | Zbl

[9] Morozov, A. D., Resonance, Cycles and Chaos in Quasi-Conservative Systems, R Dynamics, Institute of Computer Science, Izhevsk, 2005, 424 pp. (Russian) | MR

[10] Mel'nikov, V. K., “On the Stability of a Center for Time-Periodic Perturbations”, Tr. Mosk. Mat. Obs., 12 (1963), 3–52 (Russian) | MR | Zbl