Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2018_14_3_a6, author = {A. D. Morozov and K. E. Morozov}, title = {On {Synchronization} of {Quasiperiodic} {Oscillations}}, journal = {Russian journal of nonlinear dynamics}, pages = {367--376}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2018_14_3_a6/} }
A. D. Morozov; K. E. Morozov. On Synchronization of Quasiperiodic Oscillations. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 3, pp. 367-376. http://geodesic.mathdoc.fr/item/ND_2018_14_3_a6/
[1] Andronov, A. A. and Witt, A. A., “Zur Theorie des Mitnehmens von van der Pol”, Arch. für Elektrotech., 24:1 (1930), 99–110 | DOI
[2] Morozov, A. D. and Shil'nikov, L. P., “To Mathematical Theory of Oscillatory Synchronization”, Dokl. Akad. Nauk SSSR, 223:6 (1975), 1340–1343 (Russian) | MR | Zbl
[3] Prikl. Mat. Mekh., 47:3 (1983), 385–394 (Russian) | DOI | MR
[4] Anishenko, V. S. and Nikolaev, S. M., “Experimental Research of Synchronization of Two-Frequency Quasiperiodic Motions”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 15:6 (2007), 93–101 (Russian)
[5] Differ. Uravn., 53:12 (2017), 1607–1615 | DOI | MR | Zbl
[6] Bogoliubov, N. N. and Mitropolsky, Yu. A., Asymptotic Methods in the Theory of Non-Linear Oscillations, Gordon Breach, New York, 1961, x+537 pp. | MR
[7] Mitropolsky, Yu. A. and Lykova, O. B., Integrated Manifolds in the Nonlinear Mechanics, Nauka, Moscow, 1973, 512 pp. (Russian) | MR
[8] Morozov, A. D., Quasi-Conservative Systems: Cycles, Resonances and Chaos, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 30, World Sci., River Edge, N.J., 340 pp. | MR | Zbl
[9] Morozov, A. D., Resonance, Cycles and Chaos in Quasi-Conservative Systems, R Dynamics, Institute of Computer Science, Izhevsk, 2005, 424 pp. (Russian) | MR
[10] Mel'nikov, V. K., “On the Stability of a Center for Time-Periodic Perturbations”, Tr. Mosk. Mat. Obs., 12 (1963), 3–52 (Russian) | MR | Zbl