Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2018_14_2_a8, author = {B. I. Adamov}, title = {A {Study} of the {Controlled} {Motion} of a {Four-wheeled} {Mecanum} {Platform}}, journal = {Russian journal of nonlinear dynamics}, pages = {265--290}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2018_14_2_a8/} }
B. I. Adamov. A Study of the Controlled Motion of a Four-wheeled Mecanum Platform. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 2, pp. 265-290. http://geodesic.mathdoc.fr/item/ND_2018_14_2_a8/
[1] Adamov, B. I. and Kobrin, A. I., “Parametric Identification of the Mathematical Model of the Omnidirectional Mobile Robot KUKA youBot”, Mekhatronika, Avtomatizatsiya, Upravlenie, 19:4 (2018), 251–258 (Russian) | DOI
[2] Adamov, B. I. and Orlov, I. V., “Control of a Mobile Manipulator in Cylindrical Coordinate System”, Vestn. Mosk. Energ. Inst., 2012, no. 1, 28–35 (Russian)
[3] Beghin H., Étude théorique des compas gyrostatiques Anschütz et Sperri, Thése, Faculté des sciences de Paris, Paris, 1922, 132 pp. | MR
[4] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., “An Omni-Wheel Vehicle on a Plane and a Sphere”, Nelin. Dinam., 7:4 (2011), 785–801 (Russian) | DOI
[5] Gantmacher, F. R., The Theory of Matrices, v. 1, 2, Chelsea, New York, 1959 | MR
[6] Golubev, Yu. F., Appel’s Function in the Dynamics of Rigid Body Systems, Preprint No 49, KIAM, Moscow, 2014 (Russian) | MR
[7] Gradshtein, I. S. and Ryzhik, I. M., Table of Integrals, Series, and Products, 7th ed., Acad. Press, Amsterdam, 2007, 1200 pp. | MR | Zbl
[8] Zobova, A. A., “Application of Laconic Forms of the Equations of Motion in the Dynamics of Nonholonomic Mobile Robots”, Nelin. Dinam., 7:4 (2011), 771–783 (Russian) | DOI
[9] Kilin, A. A. and Bobykin, A. D., “Control of a Vehicle with Omniwheels on a Plane”, Nelin. Dinam., 10:4 (2014), 473–481 (Russian) | DOI
[10] Kilin A. A., Karavaev Yu. L., Klekovkin A. V., “Kinematic Control of a High Manoeuvrable Mobile Spherical Robot with Internal Omni-Wheeled Platform”, Nelin. Dinam., 10:1 (2014), 113–126 (Russian) | DOI | Zbl
[11] Kozlov, V. V., “Principles of Dynamics and Servo-Constraints”, Nelin. Dinam., 11:1 (2015), 169–178 (Russian) | DOI | MR | Zbl
[12] Kozlov, V. V., “The Dynamics of Systems with Servoconstraints: 1”, Regul. Chaotic Dyn., 20:3 (2015), 205–224 | DOI | MR | Zbl
[13] Kozlov, V. V., “The Dynamics of Systems with Servoconstraints: 2”, Regul. Chaotic Dyn., 20:4 (2015), 401–427 | DOI | MR | Zbl
[14] Markeev, A. P., Theoretical Mechanics, R Dynamics, Institute of Computer Science, Izhevsk, 2007, 592 pp. (Russian)
[15] Markeev, A. P., “On the Gauss Principle”, Collection of Articles on Theoretical Mechanics, v. 23, ed. A. N. Kolesnikov, Mosk. Gos. Univ., Moscow, 2000, 29–44 (Russian)
[16] Fundam. Prikl. Mat., 11:8 (2005), 29–80 (Russian) | DOI | MR | Zbl
[17] Martynenko, Yu. G., Orlov, I. V., “Motion Control Software for Telescopic Manipulator on the Mobile Platform”, Vestn. Mosk. Energ. Inst., 2003, no. 5, 60–70 (Russian) | MR
[18] Izv. Akad. Nauk. Teoriya i Sistemy Upravleniya, 2007, no. 6, 142–149 (Russian) | DOI | MR | Zbl
[19] Prikl. Mat. Mekh., 74:4 (2010), 610–619 (Russian) | DOI | MR | Zbl
[20] Mukhametzyanov, I. A., “The Principle of Feedback on the Quasi-Accelerations for Unstressed Stabilization in Finite Time of Given Manifolds of Mechanical and Generalized Systems”, Vestn. RUDN. Mat. Inform. Fiz., 2014, no. 3, 107–114 (Russian)
[21] Izv. Akad. Nauk. Teoriya i Sistemy Upravleniya, 2015, no. 1, 15–28 (Russia) | DOI | MR | Zbl
[22] Mukharlyamov, R. G. and Abramov, N. V., “Dynamic Control of Manipulator with Program Constraints”, Problems of Mechanics and Control: Nonlinear Dynamical Systems, v. 43, Perm State Univ., Perm, 2011, 90–102 (Russian)
[23] Neimark, Ju. I. and Fufaev, N. A., Dynamics of Nonholonomic Systems, Trans. Math. Monogr., 33, AMS, Providence, R.I., 1972, 518 pp. | Zbl
[24] Novozhilov, I. V., Fractional Analysis. Methods of Motion Decomposition, Birkhäuser, Basel, 1997, X+232 pp. | Zbl
[25] Tikhonov, A. N., “Systems of Differential Equations Containing Small Parameters in the Derivatives”, Mat. Sb. (N. S.), 31(73):3 (1952), 575–586 (Russian) | Zbl
[26] Adascalitei, F. and Doroftei, I., “Practical Applications for Mobile Robots Based on Mecanum Wheels: A Systematic Survey”, The Romanian Review Precision Mechanics, Optics Mechatronics, 2011, no. 40, 21–29
[27] Gfrerrer, A., “Geometry and Kinematics of the Mecanum Wheel”, Comput. Aided Geom. Des., 25:9 (2008), 784–791 | DOI | Zbl
[28] Ilon, B. E., Wheels for a Course Stable Selfpropelling Vehicle Movable in Any Desired Direction on the Ground or Some Other Base: Patent Sweden, B60B 19/12 (20060101); B60b 019/00, REF/3876255, November 13, 1972
[29] Indivery, G., Paulus, J., and Ploge, P.-G., “Motion Control of Swedish Wheeled Mobile Robot in the Presence of Actuator Saturation”, RoboCup 2006: Robot Soccer World Cup X, Lecture Notes in Comput. Sci., 4434, eds. G. Lakemeyer, E. Sklar, D. G. Sorrenti, T. Takahashi, Springer, New York, 2007, 29–44
[30] Ivanov, A. P., “On the Control of a Robot Ball Using Two Omniwheels”, Regul. Chaotic Dyn., 20:4 (2015), 441–448 | DOI | Zbl
[31] Li, X. and Zell, A., “Motion Control of an Omnidirectional Mobile Robot”, Informatics in Control, Automation and Robotics: Selected Papers from the International Conference on Informatics in Control, Automation and Robotics (2007): Part 2, Lecture Notes in Electrical Engineering, 24, eds. J. Filipe, J. A. Cetto, J. L. Ferrier, Springer, Berlin, 2009, 181–193 | DOI | Zbl
[32] Lin, L.-C. and Shih, H.-Y., “Modeling and Adaptive Control of an Omni-Mecanum-Wheeled Robot”, Intelligent Control and Automation, 4:2 (2013), 166–179 | DOI
[33] Planitz, M., “Inconsistent Systems of Linear Equations”, Math. Gazette, 63:425 (1979), 181–185 | DOI | Zbl
[34] Plumpton, J. J., Hayes, M. J. D., Langlois, R. G., and Burlton, B. V., “Atlas Motion Platform Mecanum Wheel Jacobian in the Velocity and Static Force Domains”, CCToMM Mechanisms, Machines, and Mechatronics Symposium, 2013, 10
[35] Purwin, O. and D'Andrea, R., “Trajectory Generation and Control for Four Wheeled Omnidirectional Vehicles”, Robot. Auton. Syst., 54:1 (2006), 13–22 | DOI
[36] Zimmermann, K., Zeidis, I., and Behn, C., Mechanics of Terrestrial Locomotion: With a Focus on Non-pedal Motion Systems, Springer, London, 2010, 292 pp.