Duffing Oscillator and Elliptic Curve Cryptography
Russian journal of nonlinear dynamics, Tome 14 (2018) no. 2, pp. 235-241

Voir la notice de l'article provenant de la source Math-Net.Ru

A new approach to exact discretization of the Duffing equation is presented. Integrable discrete maps are obtained by using well-studied operations from the elliptic curve cryptography.
Keywords: integrable maps, divisor arithmetic.
@article{ND_2018_14_2_a6,
     author = {A. V. Tsiganov},
     title = {Duffing {Oscillator} and {Elliptic} {Curve} {Cryptography}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {235--241},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2018_14_2_a6/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - Duffing Oscillator and Elliptic Curve Cryptography
JO  - Russian journal of nonlinear dynamics
PY  - 2018
SP  - 235
EP  - 241
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2018_14_2_a6/
LA  - en
ID  - ND_2018_14_2_a6
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T Duffing Oscillator and Elliptic Curve Cryptography
%J Russian journal of nonlinear dynamics
%D 2018
%P 235-241
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2018_14_2_a6/
%G en
%F ND_2018_14_2_a6
A. V. Tsiganov. Duffing Oscillator and Elliptic Curve Cryptography. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 2, pp. 235-241. http://geodesic.mathdoc.fr/item/ND_2018_14_2_a6/