Nonlinear Dynamics of Torsion Lattices
Russian journal of nonlinear dynamics, Tome 14 (2018) no. 2, pp. 179-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an analysis of torsion oscillations in quasi-one-dimensional lattices with periodic potentials of the nearest neighbor interaction. A one-dimensional chain of point dipoles (spins) under an external field and without the latter is the simplest realization of such a system. We obtained dispersion relations for the nonlinear normal modes for a wide range of oscillation amplitudes and wave numbers. The features of the short wavelength part of the spectrum at large-amplitude oscillations are discussed. The problem of localized excitations near the edges of the spectrum is studied by the asymptotic method. We show that the localized oscillations (breathers) appear near the long wavelength edge, while the short wavelength edge of the spectrum contains only dark solitons. The continuum limit of the dynamic equations leads to a generalization of the nonlinear Schrödinger equation and can be considered as a complex representation of the sine-Gordon equation.
Keywords: essentially nonlinear systems, coupled pendulums, nonlinear normal modes, limiting phase trajectories.
@article{ND_2018_14_2_a2,
     author = {V. V. Smirnov and M. A. Kovaleva and L. I. Manevitch},
     title = {Nonlinear {Dynamics} of {Torsion} {Lattices}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {179--193},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2018_14_2_a2/}
}
TY  - JOUR
AU  - V. V. Smirnov
AU  - M. A. Kovaleva
AU  - L. I. Manevitch
TI  - Nonlinear Dynamics of Torsion Lattices
JO  - Russian journal of nonlinear dynamics
PY  - 2018
SP  - 179
EP  - 193
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2018_14_2_a2/
LA  - en
ID  - ND_2018_14_2_a2
ER  - 
%0 Journal Article
%A V. V. Smirnov
%A M. A. Kovaleva
%A L. I. Manevitch
%T Nonlinear Dynamics of Torsion Lattices
%J Russian journal of nonlinear dynamics
%D 2018
%P 179-193
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2018_14_2_a2/
%G en
%F ND_2018_14_2_a2
V. V. Smirnov; M. A. Kovaleva; L. I. Manevitch. Nonlinear Dynamics of Torsion Lattices. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 2, pp. 179-193. http://geodesic.mathdoc.fr/item/ND_2018_14_2_a2/

[1] Stroscio, M. and Dutta, M., Phonons in Nanostructures, Cambridge Univ. Press, Cambridge, 2001, 274 pp.

[2] Mukherjee, P. K., “Phase Transitions among the Rotator Phases of the Normal Alkanes: A Review”, Phys. Rep., 588 (2015), 1–54 | DOI | MR

[3] Volkenstein, V. M., Configuration Statistics of Polymeric Chains, Akad. Nauk, Moscow, 1959, 466 pp. (Russian)

[4] Braun, O. M. and Kivshar, Yu. S., The Frenkel – Kontorova Model: Concepts, Methods, and Applications, Springer, Berlin, 2004, XVIII+472 pp. | MR | Zbl

[5] J. Cuevas-Maraver, P. Kevrekidis, F. Williams (eds.), The sine-Gordon Model and Its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics, Springer, Cham, 2014, XIII+263 pp. | MR | Zbl

[6] Takeno, Sh. and Homma, Sh., “A sine-Lattice (sine-Form Discrete sine-Gordon) Equation: One- and Two-Kink Solutions and Physical Models”, J. Phys. Soc. Japan, 55:1 (1986), 65–75 | DOI | MR

[7] Yomosa, S., “Soliton Excitations in Deoxyribonucleic Acid (DNA) Double Helices”, Phys. Rev. A, 27:4 (1983), 2120–2125 | DOI | MR

[8] Manevitch, L. I. and Smirnov, V. V., “Limiting Phase Trajectories and the Origin of Energy Localization in Nonlinear Oscillatory Chains”, Phys. Rev. E, 82:3 (2010), 036602, 9 pp. | DOI | MR

[9] Smirnov, V. V. and Manevich, L. I., “Limiting Phase Trajectories and Dynamic Transitions in Nonlinear Periodic Systems”, Acoust. Phys., 57:2 (2011), 271–276 | DOI

[10] Sagdeev, R. Z., Usikov, D. A., and Zaslavsky, G. M., Nonlinear Physics: From the Pendulum to Turbulence and Chaos, Harwood Acad. Publ., Chur, 1990, 675 pp. | MR

[11] Takeno, Sh. and Peyrard, M., “Nonlinear Rotating Modes: Green’s-Function Solution”, Phys. Rev. E, 55:2 (1997), 1922–1928 | DOI

[12] Dauxois, Th. and Peyrard, M., Physics of Solitons, Cambridge Univ. Press, Cambridge, 2010, 436 pp. | MR | Zbl

[13] Lichtenberg A.,Livi R., Pettini M., Ruffo S., “Dynamics of Oscillator Chains”, The Fermi – Pasta – Ulam Problem: A Status Report, Lect. Notes Phys., 728, ed. G. Gallavotti, Springer, Berlin, 2008, 21–121 | DOI | MR | Zbl

[14] Scott, A., Nonlinear Science: Emergence and Dynamics of Coherent Structures, 2nd ed., Oxford Univ. Press, New York, 2003, 504 pp. | MR | Zbl

[15] Kivshar, Yu. S. and Luther-Davies, B., “Dark Optical Solitons: Physics and Applications”, Phys. Rep., 298:2–3 (1998), 81–197 | DOI | MR