Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2018_14_2_a2, author = {V. V. Smirnov and M. A. Kovaleva and L. I. Manevitch}, title = {Nonlinear {Dynamics} of {Torsion} {Lattices}}, journal = {Russian journal of nonlinear dynamics}, pages = {179--193}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ND_2018_14_2_a2/} }
TY - JOUR AU - V. V. Smirnov AU - M. A. Kovaleva AU - L. I. Manevitch TI - Nonlinear Dynamics of Torsion Lattices JO - Russian journal of nonlinear dynamics PY - 2018 SP - 179 EP - 193 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2018_14_2_a2/ LA - en ID - ND_2018_14_2_a2 ER -
V. V. Smirnov; M. A. Kovaleva; L. I. Manevitch. Nonlinear Dynamics of Torsion Lattices. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 2, pp. 179-193. http://geodesic.mathdoc.fr/item/ND_2018_14_2_a2/
[1] Stroscio, M. and Dutta, M., Phonons in Nanostructures, Cambridge Univ. Press, Cambridge, 2001, 274 pp.
[2] Mukherjee, P. K., “Phase Transitions among the Rotator Phases of the Normal Alkanes: A Review”, Phys. Rep., 588 (2015), 1–54 | DOI | MR
[3] Volkenstein, V. M., Configuration Statistics of Polymeric Chains, Akad. Nauk, Moscow, 1959, 466 pp. (Russian)
[4] Braun, O. M. and Kivshar, Yu. S., The Frenkel – Kontorova Model: Concepts, Methods, and Applications, Springer, Berlin, 2004, XVIII+472 pp. | MR | Zbl
[5] J. Cuevas-Maraver, P. Kevrekidis, F. Williams (eds.), The sine-Gordon Model and Its Applications: From Pendula and Josephson Junctions to Gravity and High-Energy Physics, Springer, Cham, 2014, XIII+263 pp. | MR | Zbl
[6] Takeno, Sh. and Homma, Sh., “A sine-Lattice (sine-Form Discrete sine-Gordon) Equation: One- and Two-Kink Solutions and Physical Models”, J. Phys. Soc. Japan, 55:1 (1986), 65–75 | DOI | MR
[7] Yomosa, S., “Soliton Excitations in Deoxyribonucleic Acid (DNA) Double Helices”, Phys. Rev. A, 27:4 (1983), 2120–2125 | DOI | MR
[8] Manevitch, L. I. and Smirnov, V. V., “Limiting Phase Trajectories and the Origin of Energy Localization in Nonlinear Oscillatory Chains”, Phys. Rev. E, 82:3 (2010), 036602, 9 pp. | DOI | MR
[9] Smirnov, V. V. and Manevich, L. I., “Limiting Phase Trajectories and Dynamic Transitions in Nonlinear Periodic Systems”, Acoust. Phys., 57:2 (2011), 271–276 | DOI
[10] Sagdeev, R. Z., Usikov, D. A., and Zaslavsky, G. M., Nonlinear Physics: From the Pendulum to Turbulence and Chaos, Harwood Acad. Publ., Chur, 1990, 675 pp. | MR
[11] Takeno, Sh. and Peyrard, M., “Nonlinear Rotating Modes: Green’s-Function Solution”, Phys. Rev. E, 55:2 (1997), 1922–1928 | DOI
[12] Dauxois, Th. and Peyrard, M., Physics of Solitons, Cambridge Univ. Press, Cambridge, 2010, 436 pp. | MR | Zbl
[13] Lichtenberg A.,Livi R., Pettini M., Ruffo S., “Dynamics of Oscillator Chains”, The Fermi – Pasta – Ulam Problem: A Status Report, Lect. Notes Phys., 728, ed. G. Gallavotti, Springer, Berlin, 2008, 21–121 | DOI | MR | Zbl
[14] Scott, A., Nonlinear Science: Emergence and Dynamics of Coherent Structures, 2nd ed., Oxford Univ. Press, New York, 2003, 504 pp. | MR | Zbl
[15] Kivshar, Yu. S. and Luther-Davies, B., “Dark Optical Solitons: Physics and Applications”, Phys. Rep., 298:2–3 (1998), 81–197 | DOI | MR