Nonlinear Dynamics of Torsion Lattices
Russian journal of nonlinear dynamics, Tome 14 (2018) no. 2, pp. 179-193

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an analysis of torsion oscillations in quasi-one-dimensional lattices with periodic potentials of the nearest neighbor interaction. A one-dimensional chain of point dipoles (spins) under an external field and without the latter is the simplest realization of such a system. We obtained dispersion relations for the nonlinear normal modes for a wide range of oscillation amplitudes and wave numbers. The features of the short wavelength part of the spectrum at large-amplitude oscillations are discussed. The problem of localized excitations near the edges of the spectrum is studied by the asymptotic method. We show that the localized oscillations (breathers) appear near the long wavelength edge, while the short wavelength edge of the spectrum contains only dark solitons. The continuum limit of the dynamic equations leads to a generalization of the nonlinear Schrödinger equation and can be considered as a complex representation of the sine-Gordon equation.
Keywords: essentially nonlinear systems, coupled pendulums, nonlinear normal modes, limiting phase trajectories.
@article{ND_2018_14_2_a2,
     author = {V. V. Smirnov and M. A. Kovaleva and L. I. Manevitch},
     title = {Nonlinear {Dynamics} of {Torsion} {Lattices}},
     journal = {Russian journal of nonlinear dynamics},
     pages = {179--193},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ND_2018_14_2_a2/}
}
TY  - JOUR
AU  - V. V. Smirnov
AU  - M. A. Kovaleva
AU  - L. I. Manevitch
TI  - Nonlinear Dynamics of Torsion Lattices
JO  - Russian journal of nonlinear dynamics
PY  - 2018
SP  - 179
EP  - 193
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2018_14_2_a2/
LA  - en
ID  - ND_2018_14_2_a2
ER  - 
%0 Journal Article
%A V. V. Smirnov
%A M. A. Kovaleva
%A L. I. Manevitch
%T Nonlinear Dynamics of Torsion Lattices
%J Russian journal of nonlinear dynamics
%D 2018
%P 179-193
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2018_14_2_a2/
%G en
%F ND_2018_14_2_a2
V. V. Smirnov; M. A. Kovaleva; L. I. Manevitch. Nonlinear Dynamics of Torsion Lattices. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 2, pp. 179-193. http://geodesic.mathdoc.fr/item/ND_2018_14_2_a2/