On the motion of a heavy rigid body in two special cases of S.V.Kovalevskaya’s solution
Russian journal of nonlinear dynamics, Tome 14 (2018) no. 1, pp. 123-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two particular cases of the Kovalevskaya solution are studied. A modified Poinsot method is applied for the kinematic interpretation of the body motion. According to this method, the body motion is represented by rolling without sliding of the mobile hodograph of the vector collinear to the angular velocity vector along the stationary hodograph of this vector. Two variants are considered: the first variant is characterized by a plane hodograph of the auxiliary vector; the second variant corresponds to the case where the hodograph of this vector is located on the inertia ellipsoid of the body.
Mots-clés : Kovalevskaya’s solution
Keywords: Poinsot’s method.
@article{ND_2018_14_1_a9,
     author = {G. V. Gorr and E. K. Shchetinina},
     title = {On the motion of a heavy rigid body in two special cases of {S.V.Kovalevskaya{\textquoteright}s} solution},
     journal = {Russian journal of nonlinear dynamics},
     pages = {123--138},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2018_14_1_a9/}
}
TY  - JOUR
AU  - G. V. Gorr
AU  - E. K. Shchetinina
TI  - On the motion of a heavy rigid body in two special cases of S.V.Kovalevskaya’s solution
JO  - Russian journal of nonlinear dynamics
PY  - 2018
SP  - 123
EP  - 138
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2018_14_1_a9/
LA  - ru
ID  - ND_2018_14_1_a9
ER  - 
%0 Journal Article
%A G. V. Gorr
%A E. K. Shchetinina
%T On the motion of a heavy rigid body in two special cases of S.V.Kovalevskaya’s solution
%J Russian journal of nonlinear dynamics
%D 2018
%P 123-138
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2018_14_1_a9/
%G ru
%F ND_2018_14_1_a9
G. V. Gorr; E. K. Shchetinina. On the motion of a heavy rigid body in two special cases of S.V.Kovalevskaya’s solution. Russian journal of nonlinear dynamics, Tome 14 (2018) no. 1, pp. 123-138. http://geodesic.mathdoc.fr/item/ND_2018_14_1_a9/

[1] Kowalevski S., “Sur le probléme de la rotation d'un corps solide autour d'un point fixe”, Acta Math., 12 (1889), 177–232 | DOI

[2] Gorr G. V., Kudryashova L. V., Stepanova L. A., Classical problems of the dynamics of a rigid body. Development and current status, Naukova dumka, Kiev, 1978 (Russian)

[3] Delaunay N. B., “Zur Frage von der geometrischen Deutung der Integrale von S. Kowalevski bei der Bewegung eines starren Körpers um einen festen Punkte”, Mat. Sb., 16:2 (1892), 346–351 (Russian)

[4] Koval V. I., Kharlamov P. V., “On the hodographs of angular velocity for Kovalevskaja gyroscope in the Delone case”, Mekh. Tverd. Tela, 1979, no. 11, 3–17 (Russian)

[5] Zhukovskii N. E., “Geometric interpretation of the case considered by Kovalevskaya of the motion of a heavy rigid body about a fixed point”, Collected Works, v. 1, Gostekhizdat, Moscow, 1948, 294–339 (Russian)

[6] Appel'rot G. G., “Concerning section 1 of the memoir of S. V. Kovalevskaya «Sur le problème de la rotation d'un corps solide autour d'un point fixe», and the appendix to this paper”, Mat. Sb., 16:3 (1892), 483–507 (Russian)

[7] Appelroth H., “Beiträge zur Abhandlung: «Über den ersten Paragraphen der Abhandlung von S. Kowalevski: “Sur le problème de la rotation d'un corps solide autour d'un point fixe”»”, Mat. Sb., 16:3 (1892), 592–596

[8] Dokshevich A. I., Finite-form solutions of the Euler – Poisson equations, Naukova Dumka, Kiev, 1992 (Russian)

[9] Borisov A. V., Mamaev I. S., Rigid body dynamics: Hamiltonian methods, integrability, chaos, R Dynamics, Institute of Computer Science, Izhevsk, 2005 (Russian)

[10] Kolosov G. V., On some property of the Kovalevskaya problem on the rotation of a heavy rigid body about a fixed point, Sharapov, Moscow, 1901 (Russian)

[11] Mlodzieiowski B. C., “Sur un cas du mouvement d'un corps pesant autour d'un point fixe”, Mat. Sb., 18:1 (1896), 76–85 (Russian)

[12] Kozlov V. V., Methods of qualitative analysis in the dynamics of a rigid body, 2nd ed., R Dynamics, Institute of Computer Science, Moscow – Izhevsk, 2000, 248 pp. (Russian)

[13] Kharlamov M. P., Topological analysis of integrable problems of rigid body dynamics, LGU, Leningrad, 1988, 200 pp. (Russian)

[14] Gashenenko I. N., “Geometric analysis of two-frequency quasiperiodic motions of the Kovalevskaya gyroscope”, Mekh. Tverd. Tela, 1990, no. 22, 3–10 (Russian)

[15] Kharlamov P. V., Lectures on the dynamics of a rigid body, NGU, Novosibirsk, 1965 (Russian)

[16] Kharlamov P. V., “Kinematic interpretation of the motion of a body with a fixed point”, J. Appl. Math. Mech., 28:3 (1964), 615–621 | DOI

[17] Poinsot L., “Théorie nouvelle de la rotation des corps”, J. Math. Pures Appl. (1), 16 (1851), 9–129

[18] Gashenenko I. N., Gorr G. V., Kovalev A. M., Classical problems of the rigid body dynamics, Naukova Dumka, Kiev, 2012 (Russian)

[19] Gorr G. V., Kovalev A. M., The gyrostat motion, Naukova Dumka, Kiev, 2013 (Russian)

[20] Gorr G. V., Savchenko A. Ya., “On one case of motion of a heavy rigid body in the S.V. Kovalevskaya solution”, Mekh. Tverd. Tela, 1970, no. 2, 66–73 (Russian)

[21] Gorr G. V., Savchenko A. Ya., “On a periodic motion in the S.V. Kovalevskaya solution”, Mekh. Tverd. Tela, 1971, no. 3, 64–69 (Russian)

[22] Kharlamov P. V., “The motion of S. V. Kovalevskaya gyroscope in the B. K. Mlodzeevsky case”, Mekh. Tverd. Tela, 1974, no. 7, 9–17 (Russian)

[23] Kharlamov P. V., Koval V. I., “The motion of the Kovalevskaya gyroscope in the Delaunay case”, Mekh. Tverd. Tela, 1982, no. 14, 38–54 (Russian)

[24] Gashenenko I. N., Kasyanik V. N., “One particular case of motion of S.V. Kovalevskaya gyroscope”, Mekh. Tverd. Tela, 1983, no. 15, 31–34 (Russian)

[25] Gorr G. V., “On an approach in the application of the Poinsot theorem to the kinematic interpretation of the motion of a body with a fixed point”, Mekh. Tverd. Tela, 2012, no. 4, 26–36 (Russian)

[26] Gorr G. V., Sinenko A. I., “A kinematic interpretation of the motion of a heavy rigid body with a fixed point”, J. Appl. Math. Mech., 78:3 (2014), 233–241 | DOI

[27] Gorr G. V., Kovalev A. M., “The use of Rodrigues – Hamilton parameters in interpreting the motion of a rigid body with a fixed point”, J. Appl. Math. Mech., 79:5 (2015), 446–452 | DOI

[28] Lurie A. I., An analytical mechanics, Fizmatgiz, Moscow, 1961 (Russian)

[29] Chelnokov Yu. N., “On the gyrohorizont compass theory in the Rodrigues – Hamilton parameters”, Prikl. Mekh., 1984, no. 1, 111–116 (Russian)

[30] Koshlyakov V. N., The Rodrigues – Hamilton parameters and their applications in the solids mechanics, Ukrainian Acad. Sci., Kiev, 1994 (Russian)

[31] Tkachenko A. I., “On the application of the Rodrigues – Hamilton parameters in algorithms for determining the orientation of an object”, Cybernetics and computer technology, No. 69, Naukova Dumka, Kiev, 1986, 47–52 (Russian)