Scenario of reconnection in the solar corona with a simple discretization
Russian journal of nonlinear dynamics, Tome 13 (2017) no. 4, pp. 573-578.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, one of the possible scenarios for the creation of heteroclinic separators in the solar corona is described and realized. This reconnection scenario connects the magnetic field with two zero points of different signs, the fan surfaces of which do not intersect, with a magnetic field with two zero points which are connected by two heteroclinic separators. The method of proof is to create a model of the magnetic field produced by the plasma in the solar corona and to study it using the methods of dynamical systems theory. Namely, in the space of vector fields on the sphere $S^3$ with two sources, two sinks and two saddles, we construct a simple arc with two saddle-node bifurcation points that connects the system without heteroclinic curves to a system with two heteroclinic curves. The discretization of this arc is also a simple arc in the space of diffeomorphisms. The results are new.
Mots-clés : reconnections, bifurcations.
Keywords: separators
@article{ND_2017_13_4_a8,
     author = {O. V. Pochinka and E. V. Kruglov and A. Y. Dolgonsova},
     title = {Scenario of reconnection in the solar corona with a simple discretization},
     journal = {Russian journal of nonlinear dynamics},
     pages = {573--578},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2017_13_4_a8/}
}
TY  - JOUR
AU  - O. V. Pochinka
AU  - E. V. Kruglov
AU  - A. Y. Dolgonsova
TI  - Scenario of reconnection in the solar corona with a simple discretization
JO  - Russian journal of nonlinear dynamics
PY  - 2017
SP  - 573
EP  - 578
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2017_13_4_a8/
LA  - ru
ID  - ND_2017_13_4_a8
ER  - 
%0 Journal Article
%A O. V. Pochinka
%A E. V. Kruglov
%A A. Y. Dolgonsova
%T Scenario of reconnection in the solar corona with a simple discretization
%J Russian journal of nonlinear dynamics
%D 2017
%P 573-578
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2017_13_4_a8/
%G ru
%F ND_2017_13_4_a8
O. V. Pochinka; E. V. Kruglov; A. Y. Dolgonsova. Scenario of reconnection in the solar corona with a simple discretization. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 4, pp. 573-578. http://geodesic.mathdoc.fr/item/ND_2017_13_4_a8/

[1] Browns D. S., Priest E. R., “The topological behaviour of stable magnetic separators”, Sol. Phys., 190 (1999), 25–33

[2] Fleitas G., “Replacing tangencies by saddle-nodes”, Bol. Soc. Brasil. Mat., 8:1 (1977), 47–51

[3] Grines V., Medvedev T., Pochinka O., Zhuzhoma E., “On heteroclinic separators of magnetic fields in electrically conducting fluids”, Phis. D, 294 (2015), 1–5

[4] Grines V., Medvedev T., Pochinka O., Dynamical systems on $2$- and $3$-manifolds, Dev. Math., 46, Springer, New York, 2016, 295 pp.

[5] Haynes A. L., Parnell C. E., Galsgaard K., Priest E. R., “Magnetohydrodynamic evolution of magnetic skeletons”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463:2080 (2007), 1097–1115

[6] Newhouse S., Peixoto M. M., “There is a simple arc joining any two Morse – Smale flows”, Trois études en dynamique qualitative, Asterisque, 31, Soc. Math. France, Paris, 1976, 15–41

[7] Priest E. R., Forbes T. G., Magnetic reconnection: MHD theory and applications, Cambridge Univ. Press, Cambridge, 2007, 616 pp.

[8] Zhuzhoma E. V., Medvedev V. S., “Birth of separators in magnetic fields”, Dinamicheskie Sistemy, 6(34):1 (2016), 37–49 (Russian)

[9] Kruglov E. V., Talanova E. A., “On the realization of Morse – Smale diffeomorphisms with heteroclinic curves on a three-dimensional sphere”, Proc. Steklov Inst. Math., 2002, no. 1(236), 201–205

[10] Pilyugin S. Yu., “Simple connectedness with preservation of the phase diagram”, Differ. Uravn., 15:3 (1979), 408–416 (Russian)

[11] Syrovatskii S. I., “Magnetic hydrodynamics”, Uspekhi Fiz. Nauk, 62:7 (1957), 247–303 (Russian)

[12] Shilnikov L. P., Shilnikov A. L., Turaev D., Chua L. O., Methods of qualitative theory in nonlinear dynamics: Part 2, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 5, World Sci., River Edge, N.J., 2001