Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2017_13_4_a8, author = {O. V. Pochinka and E. V. Kruglov and A. Y. Dolgonsova}, title = {Scenario of reconnection in the solar corona with a simple discretization}, journal = {Russian journal of nonlinear dynamics}, pages = {573--578}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2017_13_4_a8/} }
TY - JOUR AU - O. V. Pochinka AU - E. V. Kruglov AU - A. Y. Dolgonsova TI - Scenario of reconnection in the solar corona with a simple discretization JO - Russian journal of nonlinear dynamics PY - 2017 SP - 573 EP - 578 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2017_13_4_a8/ LA - ru ID - ND_2017_13_4_a8 ER -
%0 Journal Article %A O. V. Pochinka %A E. V. Kruglov %A A. Y. Dolgonsova %T Scenario of reconnection in the solar corona with a simple discretization %J Russian journal of nonlinear dynamics %D 2017 %P 573-578 %V 13 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2017_13_4_a8/ %G ru %F ND_2017_13_4_a8
O. V. Pochinka; E. V. Kruglov; A. Y. Dolgonsova. Scenario of reconnection in the solar corona with a simple discretization. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 4, pp. 573-578. http://geodesic.mathdoc.fr/item/ND_2017_13_4_a8/
[1] Browns D. S., Priest E. R., “The topological behaviour of stable magnetic separators”, Sol. Phys., 190 (1999), 25–33
[2] Fleitas G., “Replacing tangencies by saddle-nodes”, Bol. Soc. Brasil. Mat., 8:1 (1977), 47–51
[3] Grines V., Medvedev T., Pochinka O., Zhuzhoma E., “On heteroclinic separators of magnetic fields in electrically conducting fluids”, Phis. D, 294 (2015), 1–5
[4] Grines V., Medvedev T., Pochinka O., Dynamical systems on $2$- and $3$-manifolds, Dev. Math., 46, Springer, New York, 2016, 295 pp.
[5] Haynes A. L., Parnell C. E., Galsgaard K., Priest E. R., “Magnetohydrodynamic evolution of magnetic skeletons”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463:2080 (2007), 1097–1115
[6] Newhouse S., Peixoto M. M., “There is a simple arc joining any two Morse – Smale flows”, Trois études en dynamique qualitative, Asterisque, 31, Soc. Math. France, Paris, 1976, 15–41
[7] Priest E. R., Forbes T. G., Magnetic reconnection: MHD theory and applications, Cambridge Univ. Press, Cambridge, 2007, 616 pp.
[8] Zhuzhoma E. V., Medvedev V. S., “Birth of separators in magnetic fields”, Dinamicheskie Sistemy, 6(34):1 (2016), 37–49 (Russian)
[9] Kruglov E. V., Talanova E. A., “On the realization of Morse – Smale diffeomorphisms with heteroclinic curves on a three-dimensional sphere”, Proc. Steklov Inst. Math., 2002, no. 1(236), 201–205
[10] Pilyugin S. Yu., “Simple connectedness with preservation of the phase diagram”, Differ. Uravn., 15:3 (1979), 408–416 (Russian)
[11] Syrovatskii S. I., “Magnetic hydrodynamics”, Uspekhi Fiz. Nauk, 62:7 (1957), 247–303 (Russian)
[12] Shilnikov L. P., Shilnikov A. L., Turaev D., Chua L. O., Methods of qualitative theory in nonlinear dynamics: Part 2, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 5, World Sci., River Edge, N.J., 2001