Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2017_13_4_a12, author = {E. N. Pivovarova}, title = {Stability analysis of steady motions of a spherical robot of combined type}, journal = {Russian journal of nonlinear dynamics}, pages = {611--623}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2017_13_4_a12/} }
TY - JOUR AU - E. N. Pivovarova TI - Stability analysis of steady motions of a spherical robot of combined type JO - Russian journal of nonlinear dynamics PY - 2017 SP - 611 EP - 623 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2017_13_4_a12/ LA - ru ID - ND_2017_13_4_a12 ER -
E. N. Pivovarova. Stability analysis of steady motions of a spherical robot of combined type. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 4, pp. 611-623. http://geodesic.mathdoc.fr/item/ND_2017_13_4_a12/
[1] Balandin D. V., Komarov M. A., Osipov G. V., “A motion control for a spherical robot with pendulum drive”, J. Comput. Syst. Sci. Int., 52:4 (2013), 650–663 | DOI | DOI
[2] Bloch A. M., Krishnaprasad P. S., Marsden J. E., Sánchez de Alvarez G., “Stabilization of rigid body dynamics by internal and external torques”, Automatica, 28:4 (1992), 745–756 | DOI
[3] Bloch A. M., Reyhanoglu M., McClamroch N. H., “Control and stabilization of nonholonomic dynamic systems”, IEEE Trans. Automat. Control, 37:11 (1992), 1746–1757 | DOI
[4] Borisov A. V., Kilin A. A., Mamaev I. S., “How to control Chaplygin's sphere using rotors”, Regul. Chaotic Dyn., 17:3–4 (2012), 258–272 | DOI
[5] Gajbhiye S., Banavar R. N., “Geometric tracking control for a nonholonomic system: A spherical robot”, IFAC-PapersOnLine, 49:18 (2016), 820–825 | DOI
[6] Halme A., Schonberg T., Wang Y., “Motion control of a spherical mobile robot”, Proc. of the 4th Internat. Workshop on Advanced Motion Control (AMC'96, Mie, Japan), v. 1, 259–264
[7] Hogan F. R., Forbes J. R., Barfoot T. D., “Rolling stability of a power-generating tumbleweed rover”, J. Spacecraft Rockets, 51:6 (2014), 1895–1906 | DOI
[8] Ivanova T. B., Kilin A. A., Pivovarova E. N., “Controlled motion of a spherical robot with feedback: 1”, J. Dyn. Control Syst., 2017, 14 pp.
[9] Ivanova T. B., Kilin A. A., Pivovarova E. N., “Controlled motion of a spherical robot with feedback: 2”, J. Dyn. Control Syst., 2017
[10] Ivanova T. B., Pivovarova E. N., “Dynamics and control of a spherical robot with an axisymmetric pendulum actuator”, Nelin. Dinam., 9:3 (2013), 507–520 (Russian)
[11] Karavaev Yu. L., Kilin A. A., “The dynamics and control of a spherical robot with an internal omniwheel platform”, Regul. Chaotic Dyn., 20:2 (2015), 134–-152 | DOI
[12] Kayacan E., Bayraktaroglu Z., Saeys W., “Modeling and control of a spherical rolling robot: A decoupled dynamics approach”, Robotica, 30:4 (2012), 671–680 | DOI
[13] Kilin A. A., Karavaev Yu. L., “Experimental research of dynamic of spherical robot of combined type”, Nelin. Dinam., 11:4 (2015), 721–734 (Russian)
[14] Kilin A. A., Pivovarova E. N., Ivanova T. B., “Spherical robot of combined type: Dynamics and control”, Regul. Chaotic Dyn., 20:6 (2015), 716–728 | DOI
[15] Madhushani T. W. U., Maithripala D. H. S., Wijayakulasooriya J. V., Berg J. M., “Semi-globally exponential trajectory tracking for a class of spherical robots”, Automatica J. IFAC, 85 (2017), 327–338 | DOI
[16] Yu T., Sun H., Jia Q., Zhang Y., Zhao W., “Stabilization and control of a spherical robot on an inclined plane”, Res. J. Appl. Sci. Eng. Tech., 5:6 (2013), 2289–2296