Experimental investigation of the fall of helical bodies in a fluid
Russian journal of nonlinear dynamics, Tome 13 (2017) no. 4, pp. 585-598.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents a comparative analysis of computations of the motion of heavy three-bladed screws in a fluid along with experimental results. Simulation of the motion is performed using the theory of an ideal fluid and the phenomenological model of viscous friction. For experimental purposes, models of three-bladed screws with various configurations and sizes were manufactured by casting from chemically hardening polyurethane. Comparison of calculated and experimental results has shown that the mathematical models considered essentially do not reflect the processes observed in the experiments.
Keywords: motion in a fluid, helical body, experimental investigation.
@article{ND_2017_13_4_a10,
     author = {E. V. Vetchanin and A. I. Klenov},
     title = {Experimental investigation of the fall of helical bodies in a fluid},
     journal = {Russian journal of nonlinear dynamics},
     pages = {585--598},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2017_13_4_a10/}
}
TY  - JOUR
AU  - E. V. Vetchanin
AU  - A. I. Klenov
TI  - Experimental investigation of the fall of helical bodies in a fluid
JO  - Russian journal of nonlinear dynamics
PY  - 2017
SP  - 585
EP  - 598
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2017_13_4_a10/
LA  - ru
ID  - ND_2017_13_4_a10
ER  - 
%0 Journal Article
%A E. V. Vetchanin
%A A. I. Klenov
%T Experimental investigation of the fall of helical bodies in a fluid
%J Russian journal of nonlinear dynamics
%D 2017
%P 585-598
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2017_13_4_a10/
%G ru
%F ND_2017_13_4_a10
E. V. Vetchanin; A. I. Klenov. Experimental investigation of the fall of helical bodies in a fluid. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 4, pp. 585-598. http://geodesic.mathdoc.fr/item/ND_2017_13_4_a10/

[1] Tenenev V. A., Vetchanin E. V., Ilaletdinov L. F., “Chaotic dynamics in the problem of the fall of a screw-shaped body in a fluid”, Nelin. Dinam., 12:1 (2016), 99–120 (Russian)

[2] Kirchhoff G., Vorlesungen über mathematische Physik, v. 1, Mechanik, Teubner, Leipzig, 1876, 466 pp.

[3] Lamb H., Hydrodynamics, 6th ed., Dover, New York, 1945, 768 pp.

[4] Borisov A. V., Kozlov V. V., Mamaev I. S., “Asymptotic stability and associated problems of dynamics of falling rigid body”, Regul. Chaotic Dyn., 12:5 (2007), 531–565

[5] Kozlov V. V., “On the problem of fall of a rigid body in a resisting medium”, Mosc. Univ. Mech. Bull., 45:1 (1990), 30–36

[6] Andersen A., Pesavento U., Wang Z. J., “Unsteady aerodynamics of fluttering and tumbling plates”, J. Fluid Mech., 541 (2005), 65–90

[7] Borisov A. V., Kuznetsov S. P., Mamaev I. S., Tenenev V. A., “Describing the motion of a body with an elliptical cross section in a viscous uncompressible fluid by model equations reconstructed from data processing”, Tech. Phys. Lett., 42:9 (2016), 886–890

[8] Kuznetsov S. P., “Motion of a falling card in a fluid: Finite-dimensional models, complex phenomena, and nonlinear dynamics”, Nelin. Dinam., 11:1 (2015), 3–49 (Russian)

[9] Klenov A. I., Vetchanin E. V., “Optical measurement of a fluid velocity field around a falling plate”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 25:4 (2015), 554–567 (Russian)

[10] Willmarth W. W., Hawk N. E., Harvey R. L., “Steady and unsteady motions and wakes of freely falling disks”, Phys. Fluids, 7:2 (1964), 197–208

[11] Field S. B., Klaus M., Moore M. G., Nori F., “Chaotic dynamics of falling disks”, Nature, 388:6639 (1997), 252–254

[12] Vincent L., Shambaugh W. S., Kanso E., “Holes stabilize freely falling coins”, J. Fluid Mech., 801 (2016), 250–259

[13] Korotkin A. I., Added Masses of Ship Structures, Fluid Mech. Appl., 88, Springer, Dordrecht, 2009, XII, 392 pp.

[14] Azuma A., Beppu G., Ishikawa H., Yasuda K., “Flight dynamics of the boomerang: Part 1. Fundamental analysis”, J. Guid. Control Dynam., 27:4 (2004), 545–554

[15] Beppu G., Ishikawa H., Azuma A., Yasuda K., “Flight dynamics of the boomerang: Part 2. Effects of initial conditions and geometrical configuration”, J. Guid. Control Dynam., 27:4 (2004), 555–563

[16] Vos H., “Straight boomerang of balsa wood and its physics”, Am. J. Phys., 53:6 (1985), 524–527