Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2017_13_4_a10, author = {E. V. Vetchanin and A. I. Klenov}, title = {Experimental investigation of the fall of helical bodies in a fluid}, journal = {Russian journal of nonlinear dynamics}, pages = {585--598}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2017_13_4_a10/} }
TY - JOUR AU - E. V. Vetchanin AU - A. I. Klenov TI - Experimental investigation of the fall of helical bodies in a fluid JO - Russian journal of nonlinear dynamics PY - 2017 SP - 585 EP - 598 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2017_13_4_a10/ LA - ru ID - ND_2017_13_4_a10 ER -
E. V. Vetchanin; A. I. Klenov. Experimental investigation of the fall of helical bodies in a fluid. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 4, pp. 585-598. http://geodesic.mathdoc.fr/item/ND_2017_13_4_a10/
[1] Tenenev V. A., Vetchanin E. V., Ilaletdinov L. F., “Chaotic dynamics in the problem of the fall of a screw-shaped body in a fluid”, Nelin. Dinam., 12:1 (2016), 99–120 (Russian)
[2] Kirchhoff G., Vorlesungen über mathematische Physik, v. 1, Mechanik, Teubner, Leipzig, 1876, 466 pp.
[3] Lamb H., Hydrodynamics, 6th ed., Dover, New York, 1945, 768 pp.
[4] Borisov A. V., Kozlov V. V., Mamaev I. S., “Asymptotic stability and associated problems of dynamics of falling rigid body”, Regul. Chaotic Dyn., 12:5 (2007), 531–565
[5] Kozlov V. V., “On the problem of fall of a rigid body in a resisting medium”, Mosc. Univ. Mech. Bull., 45:1 (1990), 30–36
[6] Andersen A., Pesavento U., Wang Z. J., “Unsteady aerodynamics of fluttering and tumbling plates”, J. Fluid Mech., 541 (2005), 65–90
[7] Borisov A. V., Kuznetsov S. P., Mamaev I. S., Tenenev V. A., “Describing the motion of a body with an elliptical cross section in a viscous uncompressible fluid by model equations reconstructed from data processing”, Tech. Phys. Lett., 42:9 (2016), 886–890
[8] Kuznetsov S. P., “Motion of a falling card in a fluid: Finite-dimensional models, complex phenomena, and nonlinear dynamics”, Nelin. Dinam., 11:1 (2015), 3–49 (Russian)
[9] Klenov A. I., Vetchanin E. V., “Optical measurement of a fluid velocity field around a falling plate”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 25:4 (2015), 554–567 (Russian)
[10] Willmarth W. W., Hawk N. E., Harvey R. L., “Steady and unsteady motions and wakes of freely falling disks”, Phys. Fluids, 7:2 (1964), 197–208
[11] Field S. B., Klaus M., Moore M. G., Nori F., “Chaotic dynamics of falling disks”, Nature, 388:6639 (1997), 252–254
[12] Vincent L., Shambaugh W. S., Kanso E., “Holes stabilize freely falling coins”, J. Fluid Mech., 801 (2016), 250–259
[13] Korotkin A. I., Added Masses of Ship Structures, Fluid Mech. Appl., 88, Springer, Dordrecht, 2009, XII, 392 pp.
[14] Azuma A., Beppu G., Ishikawa H., Yasuda K., “Flight dynamics of the boomerang: Part 1. Fundamental analysis”, J. Guid. Control Dynam., 27:4 (2004), 545–554
[15] Beppu G., Ishikawa H., Azuma A., Yasuda K., “Flight dynamics of the boomerang: Part 2. Effects of initial conditions and geometrical configuration”, J. Guid. Control Dynam., 27:4 (2004), 555–563
[16] Vos H., “Straight boomerang of balsa wood and its physics”, Am. J. Phys., 53:6 (1985), 524–527