On the stability of planar oscillations of a satellite-plate in the case of essential type resonance
Russian journal of nonlinear dynamics, Tome 13 (2017) no. 4, pp. 465-476.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider satellite motion about its center of mass in a circle orbit. We study the problem of orbital stability for planar pendulum-like oscillations of the satellite. It is supposed that the satellite is a rigid body whose mass geometry is that of a plate. We assume that on the unperturbed motion the middle or minor inertia axis of the satellite lies in the orbit plane, i.e., the plane of the satellite-plate is perpendicular to the plane of the orbit. In this paper we perform a nonlinear analysis of the orbital stability of planar pendulum-like oscillations of a satellite-plate for previously unexplored parameter values corresponding to the boundaries of regions of stability in the first approximation, where the essential type resonances take place. It is proved that on the mentioned boundaries the planar pendulum-like oscillations are formally orbital stable or orbitally stable in third approximation.
Keywords: Hamiltonian system, normal form, planar periodic motion, resonance, orbital stability.
Mots-clés : satellite
@article{ND_2017_13_4_a1,
     author = {B. S. Bardin and E. A. Chekina},
     title = {On the stability of planar oscillations of a satellite-plate in the case of essential type resonance},
     journal = {Russian journal of nonlinear dynamics},
     pages = {465--476},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2017_13_4_a1/}
}
TY  - JOUR
AU  - B. S. Bardin
AU  - E. A. Chekina
TI  - On the stability of planar oscillations of a satellite-plate in the case of essential type resonance
JO  - Russian journal of nonlinear dynamics
PY  - 2017
SP  - 465
EP  - 476
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2017_13_4_a1/
LA  - ru
ID  - ND_2017_13_4_a1
ER  - 
%0 Journal Article
%A B. S. Bardin
%A E. A. Chekina
%T On the stability of planar oscillations of a satellite-plate in the case of essential type resonance
%J Russian journal of nonlinear dynamics
%D 2017
%P 465-476
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2017_13_4_a1/
%G ru
%F ND_2017_13_4_a1
B. S. Bardin; E. A. Chekina. On the stability of planar oscillations of a satellite-plate in the case of essential type resonance. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 4, pp. 465-476. http://geodesic.mathdoc.fr/item/ND_2017_13_4_a1/

[1] Beletskii V. V., Satellite's motion about center of mass in a gravitational field, MGU, Moscow, 1975 (Russian)

[2] Markeev A. P., “Stability of plane oscillations and rotations of a satellite in a circular orbit”, Cosmic Research, 13:3 (1975), 285–298

[3] Akulenko L. D., Nesterov S. V., Shmatkov A. M., “Generalized parametric oscillations of mechanical systems”, J. Appl. Math. Mech., 63:5 (1999), 705–713

[4] Markeev A. P., Bardin B. S., “On the stability of planar oscillations and rotations of a satellite in a circular orbit”, Celestial Mech. Dynam. Astronom., 85:1 (2003), 51–66

[5] Bardin B. S., “On orbital stability of planar motions of symmetric satellites in cases of first and second order resonances”, Proc. of the 6th Conference on Celestial Mechanics (Señorio de Bértiz, 2003), Monogr. Real Acad. Ci. Exact. Fís.-Quím. Nat. Zaragoza, 25, eds. J. Palacian, P. Yanguas, Real Acad. Ci. Exact. Fís.-Quím. Nat., Zaragoza, 2004, 59–70

[6] Bardin B. S., Puntus A. A., Chekin A. M., Chekina E. A. paper Investigation into the stability of plane motions of a dynamically symmetric satellite at the boundaries of parametric resonance regions, Creation of advanced aircraft, eds. Yu. Yu. Komarov, V. A. Mkhitaryan, R. D. Lisin, MAI, Moscow, 2004, 50–55 (Russian)

[7] Markeev A. P., Sokolskii A. G., “Investigation into the stability of plane periodic motions of a satellite in a circular orbit”, Mech. Solids, 12:4 (1977), 39–48

[8] Markeev A. P., Sokolskii A. G., Stability of the periodic motions of an asymmetric satellite in circular orbit, Preprint No 46, Akad. Nauk SSSR, Moscow, 1980 (Russian)

[9] Bardin B. S., Chekin A. M., “Orbital stability of planar oscillations of a satellite in a circular orbit”, Cosmic Research, 46:3 (2008), 273–282

[10] Kholostova O. V., “Linear analysis of stability the planar oscillations of a satellite being a plate in a circular orbit”, Nelin. Dinam., 1:2 (2005), 181–190 (Russian)

[11] Markeev A. P., “Stability of planar rotations of a satellite in a circular orbit”, Mech. Solids, 41:4 (2006), 46–63

[12] Bardin B. S., Checkin A. M., “About orbital stability of plane rotations for a plate satellite travelling in a circular orbit”, Vestn. MAI, 14:2 (2007), 23–36 (Russian)

[13] Bardin B. S., Chekina E. A., “On the constructive algorithm for stability analysis of an equilibrium point of a periodic Hamiltonian system with two degrees of freedom in the second-order resonance case”, Regul. Chaotic Dyn., 22:7 (2017)

[14] Yakubovich V. A., Starzhinskii V. M., Parametric resonance in linear systems, Nauka, Moscow, 1987 (Russian)

[15] Markeev A. P., Libration points in celestial mechanics and space dynamics, Nauka, Moscow, 1978 (Russian)

[16] Ivanov A. P., Sokol'skii A. G., “On the stability of a nonautonomous Hamiltonian system under a parametric resonance of essential type”, J. Appl. Math. Mech., 44:6 (1980), 687–691

[17] Markeyev A. P., “A constructive algorithm for the normalization of a periodic Hamiltonian”, J. Appl. Math. Mech., 69:3 (2005), 323–337