On the topological structure of the magnetic field of regions of the photosphere
Russian journal of nonlinear dynamics, Tome 13 (2017) no. 3, pp. 399-412.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, using methods of Morse – Smale dynamical systems, we consider the topological structure of the magnetic field of regions of the photosphere for a point-charge model. For an arbitrary number of charges (regardless of their location), without assuming a potentiality of the field $\boldsymbol{\vec B}$ (and hence without applying specific formulas), we give estimates that connect the numbers of charges of a certain type with the numbers of null-points. For the boundary estimates, we describe the topological structure of the magnetic field. We present a bifurcation of the birth of a large number of separators.
Keywords: dynamical Morse–Smale system, null-points, separator.
@article{ND_2017_13_3_a6,
     author = {E. V. Zhuzhoma and V. S. Medvedev and N. V. Isaenkova},
     title = {On the topological structure of the magnetic field of regions of the photosphere},
     journal = {Russian journal of nonlinear dynamics},
     pages = {399--412},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2017_13_3_a6/}
}
TY  - JOUR
AU  - E. V. Zhuzhoma
AU  - V. S. Medvedev
AU  - N. V. Isaenkova
TI  - On the topological structure of the magnetic field of regions of the photosphere
JO  - Russian journal of nonlinear dynamics
PY  - 2017
SP  - 399
EP  - 412
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2017_13_3_a6/
LA  - ru
ID  - ND_2017_13_3_a6
ER  - 
%0 Journal Article
%A E. V. Zhuzhoma
%A V. S. Medvedev
%A N. V. Isaenkova
%T On the topological structure of the magnetic field of regions of the photosphere
%J Russian journal of nonlinear dynamics
%D 2017
%P 399-412
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2017_13_3_a6/
%G ru
%F ND_2017_13_3_a6
E. V. Zhuzhoma; V. S. Medvedev; N. V. Isaenkova. On the topological structure of the magnetic field of regions of the photosphere. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 3, pp. 399-412. http://geodesic.mathdoc.fr/item/ND_2017_13_3_a6/

[1] Baum P. J., Bratenahl A., “Flux linkages of bipolar sunspot groups: A computer study”, Sol. Phys., 67:2 (1980), 245–258 | DOI

[2] Brown D. S., Priest E. R., “The topological behaviour of $3$D null points in the Sun's corona”, Astron. Astrophys., 367 (2001), 339–346 | DOI

[3] Grines V., Medvedev T., Pochinka O., Zhuzhoma E., “On heteroclinic separators of magnetic fields in electrically conducting fluids”, Phys. D, 294 (2015), 1–5 | DOI | MR | Zbl

[4] Longcope D. W., “Topological and current ribbons: A model for current, reconnection and flaring in a complex, evolving corona”, Sol. Phys., 169:1 (1996), 91–121 | DOI

[5] Maclean Rh., Beveridge C., Longcope D., Brown D., Priest E., “A topological analysis of the magnetic breakout model for an eruptive solar flare”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461:2059 (2005), 2099–2120 | DOI | MR | Zbl

[6] Maclean R., Beveridge C., Priest E., “Coronal magnetic topologies in a spherical geometry: 2. Four balanced flux sources”, Sol. Phys., 238:1 (2006), 13–27 | DOI

[7] Oreshina A. V., Oreshina I. V., Somov B. V., “Magnetic-topology evolution in NOAA AR 10501 on 2003 November 18”, Astron. Astrophys., 538 (2012), A138, 6 pp. | DOI

[8] Priest E., Solar magnetohydrodynamics, Reidel, Dordrecht, 1982, 459 pp.

[9] Priest E. R., Bungey T. N., Titov V. S., “The $3$D topology and interaction of complex magnetic flux systems”, Geophys. Astrophys. Fluid Dynam., 84:1–2 (1997), 127–163 | DOI | MR

[10] Priest E. R., Forbes T. G., Magnetic reconnection: MHD theory and applications, Cambridge Univ. Press, Cambridge, 2007, 616 pp. | MR

[11] Priest E., Schriver C., “Aspects of three-dimensional magnetic reconnection”, Sol. Phys., 190:1–2 (1999), 1–24 | DOI | MR

[12] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc. (N. S.), 73 (1967), 747–817 | DOI | MR | Zbl

[13] Sweet P. A., “The production of high energy particles in solar flares”, Il Nuovo Cimento, 8, 2 (1958), 188–196 | DOI

[14] Gorbachev V. S., Kel'ner S. R., Somov B. V., Shvarts A. S., “A new topological approach to the question of Solar flares trigger”, Sov. Astron., 32:3 (1988), 308–314

[15] Grines V. Z., Gurevich E. Ya., Zhuzhoma E. V., Zinina S. Kh., “Heteroclinic curves of Morse – Smale cascades and separators in magnetic field of plasma”, Nelin. Dinam., 10:4 (2014), 427–438 (Russian) | Zbl

[16] Grines V. Z., Zhuzhoma E. V., Medvedev V. S., “New relations for Morse – Smale flows and diffeomorphisms”, Dokl. Math., 65:1 (2002), 95–97 | MR | Zbl

[17] Grines V. Z., Zhuzhoma E. V., Medvedev V. S., “New relations for Morse – Smale systems with trivially embedded one-dimensional separatrices”, Sb. Math., 194:7 (2003), 979–1007 | DOI | DOI | MR | Zbl

[18] Grines V. Z., Zhuzhoma E. V., Medvedev V. S., Pochinka O. V., “Global attractor and repeller of Morse – Smale diffeomorphisms”, Proc. Steklov Inst. Math., 271:1 (2010), 103–124 | DOI | MR | Zbl

[19] Grines V. Z., Pochinka O. V., Introduction to topological classification of cascades on manifolds of dimension two and three, R Dynamics, Institute of Computer Science, Izhevsk, 2011, 424 pp. (Russian)

[20] Gurevich E. Ya., “On Morse – Smale diffeomorphisms on manifolds of dimension greater then $3$”, Zh. SVMO, 5:1 (2003), 162–168 (Russian)

[21] Gurevich E. Ya., Medvedev V. S., “On manifolds of dimension $n$, allowing diffeomorphisms with saddle points of index $1$ and $n-1$”, Zh. SVMO, 8:1 (2006), 204–208 (Russian) | Zbl

[22] Zhuzhoma E. V., Medvedev V. S., “Birth of the separators”, Dinam. sistemy, 6:34 (2016), 35–45 (Russian)

[23] Molodenskii M. M., Syrovatskii S. I., “Magnetic fields of active regions and their zero points”, Sov. Astron., 21:6 (1977), 734–741