Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2017_13_3_a6, author = {E. V. Zhuzhoma and V. S. Medvedev and N. V. Isaenkova}, title = {On the topological structure of the magnetic field of regions of the photosphere}, journal = {Russian journal of nonlinear dynamics}, pages = {399--412}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2017_13_3_a6/} }
TY - JOUR AU - E. V. Zhuzhoma AU - V. S. Medvedev AU - N. V. Isaenkova TI - On the topological structure of the magnetic field of regions of the photosphere JO - Russian journal of nonlinear dynamics PY - 2017 SP - 399 EP - 412 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2017_13_3_a6/ LA - ru ID - ND_2017_13_3_a6 ER -
%0 Journal Article %A E. V. Zhuzhoma %A V. S. Medvedev %A N. V. Isaenkova %T On the topological structure of the magnetic field of regions of the photosphere %J Russian journal of nonlinear dynamics %D 2017 %P 399-412 %V 13 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2017_13_3_a6/ %G ru %F ND_2017_13_3_a6
E. V. Zhuzhoma; V. S. Medvedev; N. V. Isaenkova. On the topological structure of the magnetic field of regions of the photosphere. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 3, pp. 399-412. http://geodesic.mathdoc.fr/item/ND_2017_13_3_a6/
[1] Baum P. J., Bratenahl A., “Flux linkages of bipolar sunspot groups: A computer study”, Sol. Phys., 67:2 (1980), 245–258 | DOI
[2] Brown D. S., Priest E. R., “The topological behaviour of $3$D null points in the Sun's corona”, Astron. Astrophys., 367 (2001), 339–346 | DOI
[3] Grines V., Medvedev T., Pochinka O., Zhuzhoma E., “On heteroclinic separators of magnetic fields in electrically conducting fluids”, Phys. D, 294 (2015), 1–5 | DOI | MR | Zbl
[4] Longcope D. W., “Topological and current ribbons: A model for current, reconnection and flaring in a complex, evolving corona”, Sol. Phys., 169:1 (1996), 91–121 | DOI
[5] Maclean Rh., Beveridge C., Longcope D., Brown D., Priest E., “A topological analysis of the magnetic breakout model for an eruptive solar flare”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461:2059 (2005), 2099–2120 | DOI | MR | Zbl
[6] Maclean R., Beveridge C., Priest E., “Coronal magnetic topologies in a spherical geometry: 2. Four balanced flux sources”, Sol. Phys., 238:1 (2006), 13–27 | DOI
[7] Oreshina A. V., Oreshina I. V., Somov B. V., “Magnetic-topology evolution in NOAA AR 10501 on 2003 November 18”, Astron. Astrophys., 538 (2012), A138, 6 pp. | DOI
[8] Priest E., Solar magnetohydrodynamics, Reidel, Dordrecht, 1982, 459 pp.
[9] Priest E. R., Bungey T. N., Titov V. S., “The $3$D topology and interaction of complex magnetic flux systems”, Geophys. Astrophys. Fluid Dynam., 84:1–2 (1997), 127–163 | DOI | MR
[10] Priest E. R., Forbes T. G., Magnetic reconnection: MHD theory and applications, Cambridge Univ. Press, Cambridge, 2007, 616 pp. | MR
[11] Priest E., Schriver C., “Aspects of three-dimensional magnetic reconnection”, Sol. Phys., 190:1–2 (1999), 1–24 | DOI | MR
[12] Smale S., “Differentiable dynamical systems”, Bull. Amer. Math. Soc. (N. S.), 73 (1967), 747–817 | DOI | MR | Zbl
[13] Sweet P. A., “The production of high energy particles in solar flares”, Il Nuovo Cimento, 8, 2 (1958), 188–196 | DOI
[14] Gorbachev V. S., Kel'ner S. R., Somov B. V., Shvarts A. S., “A new topological approach to the question of Solar flares trigger”, Sov. Astron., 32:3 (1988), 308–314
[15] Grines V. Z., Gurevich E. Ya., Zhuzhoma E. V., Zinina S. Kh., “Heteroclinic curves of Morse – Smale cascades and separators in magnetic field of plasma”, Nelin. Dinam., 10:4 (2014), 427–438 (Russian) | Zbl
[16] Grines V. Z., Zhuzhoma E. V., Medvedev V. S., “New relations for Morse – Smale flows and diffeomorphisms”, Dokl. Math., 65:1 (2002), 95–97 | MR | Zbl
[17] Grines V. Z., Zhuzhoma E. V., Medvedev V. S., “New relations for Morse – Smale systems with trivially embedded one-dimensional separatrices”, Sb. Math., 194:7 (2003), 979–1007 | DOI | DOI | MR | Zbl
[18] Grines V. Z., Zhuzhoma E. V., Medvedev V. S., Pochinka O. V., “Global attractor and repeller of Morse – Smale diffeomorphisms”, Proc. Steklov Inst. Math., 271:1 (2010), 103–124 | DOI | MR | Zbl
[19] Grines V. Z., Pochinka O. V., Introduction to topological classification of cascades on manifolds of dimension two and three, R Dynamics, Institute of Computer Science, Izhevsk, 2011, 424 pp. (Russian)
[20] Gurevich E. Ya., “On Morse – Smale diffeomorphisms on manifolds of dimension greater then $3$”, Zh. SVMO, 5:1 (2003), 162–168 (Russian)
[21] Gurevich E. Ya., Medvedev V. S., “On manifolds of dimension $n$, allowing diffeomorphisms with saddle points of index $1$ and $n-1$”, Zh. SVMO, 8:1 (2006), 204–208 (Russian) | Zbl
[22] Zhuzhoma E. V., Medvedev V. S., “Birth of the separators”, Dinam. sistemy, 6:34 (2016), 35–45 (Russian)
[23] Molodenskii M. M., Syrovatskii S. I., “Magnetic fields of active regions and their zero points”, Sov. Astron., 21:6 (1977), 734–741