Regular and chaotic dynamics in the rubber model of a Chaplygin top
Russian journal of nonlinear dynamics, Tome 13 (2017) no. 2, pp. 277-297.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the rolling motion of a dynamically asymmetric unbalanced ball (Chaplygin top) in a gravitational field on a plane under the assumption that there is no slipping and spinning at the point of contact. We give a description of strange attractors existing in the system and discuss in detail the scenario of how one of them arises via a sequence of perioddoubling bifurcations. In addition, we analyze the dynamics of the system in absolute space and show that in the presence of strange attractors in the system the behavior of the point of contact considerably depends on the characteristics of the attractor and can be both chaotic and nearly quasi-periodic.
Keywords: Chaplygin top, nonholonomic constraint, rubber model, strange attractor, trajectory of the point of contact.
Mots-clés : bifurcation
@article{ND_2017_13_2_a8,
     author = {A. V. Borisov and A. O. Kazakov and E. N. Pivovarova},
     title = {Regular and chaotic dynamics in the rubber model of a {Chaplygin} top},
     journal = {Russian journal of nonlinear dynamics},
     pages = {277--297},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2017_13_2_a8/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - A. O. Kazakov
AU  - E. N. Pivovarova
TI  - Regular and chaotic dynamics in the rubber model of a Chaplygin top
JO  - Russian journal of nonlinear dynamics
PY  - 2017
SP  - 277
EP  - 297
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2017_13_2_a8/
LA  - ru
ID  - ND_2017_13_2_a8
ER  - 
%0 Journal Article
%A A. V. Borisov
%A A. O. Kazakov
%A E. N. Pivovarova
%T Regular and chaotic dynamics in the rubber model of a Chaplygin top
%J Russian journal of nonlinear dynamics
%D 2017
%P 277-297
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2017_13_2_a8/
%G ru
%F ND_2017_13_2_a8
A. V. Borisov; A. O. Kazakov; E. N. Pivovarova. Regular and chaotic dynamics in the rubber model of a Chaplygin top. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 2, pp. 277-297. http://geodesic.mathdoc.fr/item/ND_2017_13_2_a8/

[1] Afraimovich V. S., Shil'nikov L. P., “Strange attractors and quasiattractors”, Nonlinear Dynamics and Turbulence, Interaction Mech. Math. Ser., eds. G. I. Barenblatt, G. Iooss, D. D. Joseph, Pitman, Boston, Mass., 1983, 1–34 | MR

[2] Armour R. H., Vincent J. F. V., “Rolling in nature and robotics: A review”, J. Bionic Eng., 3:4 (2006), 195–208 | DOI

[3] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Rolling of a ball without spinning on a plane: The absence of an invariant measure in a system with a complete set of integrals”, Regul. Chaotic Dyn., 17:6 (2012), 571–579 | DOI | MR | Zbl

[4] Borisov A. V., Fedorov Yu. N., Mamaev I. S., “Chaplygin ball over a fixed sphere: An explicit integration”, Regul. Chaotic Dyn., 13:6 (2008), 557–571 | DOI | MR | Zbl

[5] Borisov A. V., Jalnine A. Yu., Kuznetsov S. P., Sataev I. R., Sedova J. V., “Dynamical phenomena occurring due to phase volume compression in nonholonomic model of the rattleback”, Regul. Chaotic Dyn., 17:6 (2012), 512–532 | DOI | MR | Zbl

[6] Borisov A. V., Kazakov A. O., Sataev I. R., “The reversal and chaotic attractor in the nonholonomic model of Chaplygin's top”, Regul. Chaotic Dyn., 19:6 (2014), 718–733 | DOI | MR | Zbl

[7] Borisov A. V., Kazakov A. O., Sataev I. R., “Spiral chaos in the nonholonomic model of a Chaplygin top”, Regul. Chaotic Dyn., 21:7–8 (2016), 939–954 | DOI | MR | Zbl

[8] Borisov A. V., Kilin A. A., Mamaev I. S., “How to control Chaplygin’s sphere using rotors”, Regul. Chaotic Dyn., 17:3–4 (2012), 258–272 | DOI | MR | Zbl

[9] Borisov A. V., Kilin A. A., Mamaev I. S., “How to control Chaplygin’s sphere using rotors: 2”, Regul. Chaotic Dyn., 18:1–2 (2013), 144–158 | DOI | MR | Zbl

[10] Borisov A. V., Kilin A. A., Mamaev I. S., “The problem of drift and recurrence for the rolling Chaplygin ball”, Regul. Chaotic Dyn., 18:6 (2013), 832–859 | DOI | MR | Zbl

[11] Borisov A. V., Kuznetsov S. P., “Regular and chaotic motions of a Chaplygin sleigh under periodic pulsed torque impacts”, Regul. Chaotic Dyn., 21:7–8 (2016), 792–803 | DOI | MR | Zbl

[12] Borisov A. V., Mamaev I. S., “Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490 | DOI | MR | Zbl

[13] Borisov A. V., Mamaev I. S., “Topological analysis of an integrable system related to the rolling of a ball on a sphere”, Regul. Chaotic Dyn., 18:4 (2013), 356–371 | DOI | MR | Zbl

[14] Borisov A. V., Mamaev I. S., “The rolling motion of a rigid body on a plane and a sphere: Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200 | DOI | MR | Zbl

[15] Borisov A. V., Mamaev I. S., Bizyaev I. A., “The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere”, Regul. Chaotic Dyn., 18:3 (2013), 277–328 | DOI | MR | Zbl

[16] Borisov A. V., Mamaev I. S., Bizyaev I. A., “Historical and critical review of the development of nonholonomic mechanics: The classical period”, Regul. Chaotic Dyn., 21:4 (2016), 455–476 | DOI | MR | Zbl

[17] Borisov A. V., Mamaev I. S., Kilin A. A., “Rolling of a ball on a surface: New integrals and hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 201–220 | DOI | MR

[18] Chase R., Pandya A., “A review of active mechanical driving principles of spherical robots”, Robotics, 1:1 (2012), 3–23 | DOI

[19] Crossley V. A., A literature review on the design of spherical rolling robots, Pittsburgh, Pa., 2006, 6 pp.

[20] Ehlers K. M., Koiller J., “Rubber rolling: Geometry and dynamics of $2-3-5$ distributions”, Proc. IUTAM Symposium 2006 on Hamiltonian Dynamics, Vortex Structures, Turbulence (Moscow, Russia, 25–30 August 2006), 469–480 | MR

[21] Feudel U., Grebogi C., Hunt B. R., Yorke J. A., “Map with more than 100 coexisting low-period periodic attractors”, Phys. Rev. E, 54:1 (1996), 71–81 | DOI | MR

[22] Ivanov A. P., “On detachment conditions in the problem on the motion of a rigid body on a rough plane”, Regul. Chaotic Dyn., 13:4 (2008), 355–368 | DOI | MR | Zbl

[23] Ivanov A. P., “Geometric representation of detachment conditions in systems with unilateral constraint”, Regul. Chaotic Dyn., 13:5 (2008), 435–442 | DOI | MR | Zbl

[24] Ivanov A. P., “On final motions of a Chaplygin ball on a rough plane”, Regul. Chaotic Dyn., 21:7–8 (2016), 804–810 | DOI | MR | Zbl

[25] Jung P., Marchegiani G., Marchesoni F., “Nonholonomic diffusion of a stochastic sled”, Phys. Rev. E, 93:1 (2016), 012606, 9 pp. | DOI

[26] Kaplan J. L., Yorke J. A., “A chaotic behavior of multi-dimensional differential equations”, Functional Differential Equations and Approximations of Fixed Points, Lecture Notes in Math., 730, eds. H.-O. Peitgen, H.-O. Walther, Springer, Berlin, 1979, 204–227 | DOI | MR

[27] Kazakov A. O., “Strange attractors and mixed dynamics in the problem of an unbalanced rubber ball rolling on a plane”, Regul. Chaotic Dyn., 18:5 (2013), 508–520 | DOI | MR | Zbl

[28] Kazakov A. O., “On the chaotic dynamics of a rubber ball with three internal rotors”, Nonlinear Dynamics Mobile Robotics, 2:1 (2014), 73–97 | MR

[29] Kilin A. A., “The dynamics of Chaplygin ball: The qualitative and computer analysis”, Regul. Chaotic Dyn., 6:3 (2001), 291–306 | DOI | MR | Zbl

[30] Marsden J. E., Ross Sh. D., “New methods in celestial mechanics and mission design”, Bull. Amer. Math. Soc. (N. S.), 43:1 (2006), 43–73 | DOI | MR | Zbl

[31] Ott E., Grebogi C., Yorke J. A., “Controlling chaos”, Phys. Rev. Lett., 64:11 (1990), 1196–1199 | DOI | MR | Zbl

[32] Roberts J. A. G., Quispel G. R. W., “Chaos and time-reversal symmetry: Order and chaos in reversible dynamical systems”, Phys. Rep., 216:2–3 (1992), 63–177 | DOI | MR

[33] Topaj D., Pikovsky A., “Reversibility vs. synchronization in oscillator lattices”, Phys. D, 170:2 (2002), 118–130 | DOI | MR | Zbl

[34] Bizyaev I. A., “Nonintegrability and obstructions to the Hamiltonianization of a nonholonomic Chaplygin top”, Dokl. Math., 90:2 (2014), 631–634 | DOI | DOI | MR | Zbl

[35] Borisov A. V., Mamaev I. S., Rigid body dynamics: Hamiltonian methods, integrability, chaos, R Dynamics, Institute of Computer Science, Izhevsk, 2005 (Russian) | MR

[36] Borisov A. V., Mamaev I. S., “Isomorphism and Hamilton representation of some nonholonomic systems”, Siberian Math. J., 48:1 (2007), 26–36 | DOI | MR | Zbl

[37] Borisov A. V., Mamaev I. S., “Strange attractors in rattleback dynamics”, Physics–Uspekhi, 46:4 (2003), 393–403 ; Неголономные динамические системы: Интегрируемость, хаос, странные аттракторы, ред. А. В. Борисов, И. С. Мамаев, Институт компьютерных исследований, Москва – Ижевск, 2002, 67–70 | DOI | MR

[38] Borisov A. V., Fedorov Yu. N., “On two modified integrable problems in dynamics”, Mosc. Univ. Mech. Bull., 50:6 (1995), 16–18 | MR | MR | Zbl

[39] Sataev I. R., Kazakov A. O., “Scenarios of transition to chaos in the nonholonomic model of a Chaplygin top”, Nelin. Dinam., 12:2 (2016), 235–250 (Russian) | MR | Zbl

[40] Feigenbaum M. J., “Universal behavior in nonlinear systems”, Phys. D, 7:1–3 (1983), 16–39 | DOI | DOI | MR

[41] Chaplygin S. A., “O katanii shara po gorizontalnoi ploskosti”, Matem. sb., 24 (1903), 139–168 ; Чаплыгин С. А., Собр. соч.: Т. 1 /С. А. Чаплыгин, ОГИЗ, Mосква – Ленинград, 1948, 76–101 ; Chaplygin S. A., “On a ball's rolling on a horizontal plane”, Regul. Chaotic Dyn., 7:2 (2002), 131–148 | MR | DOI | MR | Zbl