Autonomous strange non-chaotic oscillations in a system of mechanical rotators
Russian journal of nonlinear dynamics, Tome 13 (2017) no. 2, pp. 257-275.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate strange nonchaotic self-oscillations in a dissipative system consisting of three mechanical rotators driven by a constant torque applied to one of them. The external driving is nonoscillatory; the incommensurable frequency ratio in vibrational-rotational dynamics arises due to an irrational ratio of diameters of the rotating elements involved. It is shown that, when losing stable equilibrium, the system can demonstrate two- or three-frequency quasi-periodic, chaotic and strange nonchaotic self-oscillations. The conclusions of the work are confirmed by numerical calculations of Lyapunov exponents, fractal dimensions, spectral analysis, and by special methods of detection of a strange nonchaotic attractor (SNA): phase sensitivity and analysis using rational approximation for the frequency ratio. In particular, SNA possesses a zero value of the largest Lyapunov exponent (and negative values of the other exponents), a capacitive dimension close to “2” and a singular continuous power spectrum. In general, the results of this work shed a new light on the occurrence of strange nonchaotic dynamics.
Keywords: autonomous dynamical system, mechanical rotators, quasi-periodic oscillations, strange nonchaotic attractor
Mots-clés : chaos.
@article{ND_2017_13_2_a7,
     author = {A. Yu. Jalnine and S. P. Kuznetsov},
     title = {Autonomous strange non-chaotic oscillations in a system of mechanical rotators},
     journal = {Russian journal of nonlinear dynamics},
     pages = {257--275},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2017_13_2_a7/}
}
TY  - JOUR
AU  - A. Yu. Jalnine
AU  - S. P. Kuznetsov
TI  - Autonomous strange non-chaotic oscillations in a system of mechanical rotators
JO  - Russian journal of nonlinear dynamics
PY  - 2017
SP  - 257
EP  - 275
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2017_13_2_a7/
LA  - ru
ID  - ND_2017_13_2_a7
ER  - 
%0 Journal Article
%A A. Yu. Jalnine
%A S. P. Kuznetsov
%T Autonomous strange non-chaotic oscillations in a system of mechanical rotators
%J Russian journal of nonlinear dynamics
%D 2017
%P 257-275
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2017_13_2_a7/
%G ru
%F ND_2017_13_2_a7
A. Yu. Jalnine; S. P. Kuznetsov. Autonomous strange non-chaotic oscillations in a system of mechanical rotators. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 2, pp. 257-275. http://geodesic.mathdoc.fr/item/ND_2017_13_2_a7/

[1] Feudel U., Kuznetsov S., Pikovsky A., Strange nonchaotic attractors: Dynamics between order and chaos in quasiperiodically forced systems, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 56, World Sci., Hackensack, N.J., 2006, 213 pp. | MR

[2] Ding M. Zh., Grebogi C., Ott E., “Dimensions of strange nonchaotic attractors”, Phys. Lett. A, 137:4–5 (1989), 167–172 | DOI | MR

[3] Hunt B. R., Ott E., “Fractal properties of robust strange nonchaotic attractors”, Phys. Rev. Lett., 87:25 (2001), 254101, 4 pp. | DOI

[4] Pikovsky A. S., Feudel U., “Correlations and spectra of strange nonchaotic attractors”, J. Phys. A, 27:15 (1994), 5209–5219 | DOI | MR | Zbl

[5] Feudel U., Pikovsky A., Politi A., “Renormalization of correlations and spectra of a strange nonchaotic attractor”, J. Phys. A, 29:17 (1996), 5297–5311 | DOI | MR | Zbl

[6] Pikovsky A. S., Zaks M. A., Feudel U., Kurths J., “Singular continuous spectra in dissipative dynamics”, Phys. Rev. E (3), 52:1, part A (1995), 285–296 | DOI | MR

[7] Grebogi C., Ott E., Pelikan S., Yorke J. A., “Strange attractors that are not chaotic”, Phys. D, 13:1–2 (1984), 261–268 | DOI | MR | Zbl

[8] Bondeson A., Ott E., Antonsen T. M. Jr., “Quasiperiodically forced damped pendula and Schrödinger equations with quasiperiodic potentials: Implications of their equivalence”, Phys. Rev. Lett., 55:20 (1985), 2103–2106 | DOI | MR

[9] Ding M., Grebogi C., Ott E., “Evolution of attractors in quasiperiodically forced systems: From quasiperiodic to strange nonchaotic to chaotic”, Phys. Rev. A, 39:5 (1989), 2593–2598 | DOI

[10] Pikovsky A. S., Feudel U., “Characterization of strange nonchaotic attractors”, Chaos, 5:1 (1995), 253–260 | DOI | MR | Zbl

[11] Feudel U., Kurths J., Pikovsky A. S., “Strange non-chaotic attractor in a quasiperiodically forced circle map”, Phys. D, 88:3–4 (1995), 176–186 | DOI | MR | Zbl

[12] Kunetsov S. P., Pikovsky A. S., Feudel U., “Birth of a strange nonchaotic attractor: A renormalization group analysis”, Phys. Rev. E (3), 51:3, part A (1995), R1629–R1632 | DOI | MR

[13] Nishikawa T., Kaneko K., “Fractalization of a torus as a strange nonchaotic attractor”, Phys. Rev. E, 54:6 (1996), 6114–6124 | DOI

[14] Glendinning P., “Intermittency and strange nonchaotic attractors in quasi-periodically forced circle maps”, Phys. Lett. A, 244:6 (1998), 545–550 | DOI | MR | Zbl

[15] Kim S.-Y., Lim W. Ott E., “Mechanism for the intermittent route to strange nonchaotic attractors”, Phys. Rev. E, 67:5 (2003), 056203, 5 pp. | DOI

[16] Osinga H., Wiersig J., Glendinning P., Feudel U., “Multistability and nonsmooth bifurcations in the quasiperiodically forced circle map”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11:12 (2001), 3085–3105 | DOI | MR | Zbl

[17] Kuznetsov S. P., “Torus fractalization and intermittency”, Phys. Rev. E (3), 65:6 (2002), 066209, 13 pp. | DOI | MR

[18] Kuznetsov S. P., Neumann E., “Torus fractalization and singularities in the current-voltage characteristics for the quasiperiodically forced Josephson junction”, Europhys. Lett., 61:1 (2003), 20–26 | DOI

[19] Jalnine A. Yu., Osbaldestin A. H., “Smooth and non-smooth dependence of Lyapunov vectors upon the angle variable on a torus in the context of torus-doubling transitions in the quasiperiodically forced Hénon map”, Phys. Rev. E (3), 71:1 (2005), 016206, 14 pp. | DOI | MR

[20] Jalnine A. Yu., Kuznetsov S. P., Osbaldestin A. H., “Dynamics of small perturbations of orbits on a torus in a quasiperiodically forced 2D dissipative map”, Regul. Chaotic Dyn., 11:1 (2006), 19–30 | DOI | MR | Zbl

[21] Jalnine A. Yu., Kuznetsov S. P., “On the realization of the Hunt – Ott strange nonchaotic attractor in a physical system”, Tech. Phys., 52:4 (2007), 401–408 | DOI | MR

[22] Ditto W. L., Spano M. L., Savage H. T., Rauseo S. N., Heagy J., Ott, E., “Experimental observation of a strange nonchaotic attractor”, Phys. Rev. Lett., 65:5 (1990), 533–536 | DOI

[23] Vohra S. T., Bucholtz F., Koo K. P., Dagenais D. M., “Experimental observation of period-doubling suppression in the strain dynamics of a magnetostrictive ribbon”, Phys. Rev. Lett., 66:2 (1991), 212–215 | DOI

[24] Zhou T., Moss F., Bulsara A., “Observation of a strange nonchaotic attractor in a multistable potential”, Phys. Rev. A, 45:8 (1992), 5394–5400 | DOI

[25] Ding W. X., Deutsch H., Dinklage A., Wilke C., “Observation of a strange nonchaotic attractor in a neon glow discharge”, Phys. Rev. E, 55:3 (1997), 3769–3772 | DOI

[26] Yang T., Bilimgut K., “Experimental results of strange nonchaotic phenomenon in a second-order quasi-periodically forced electronic circuit”, Phys. Lett. A, 236:5–6 (1997), 494–504 | DOI

[27] Bezruchko B. P., Kuznetsov S. P., Seleznev Ye. P., “Experimental observation of dynamics near the torus-doubling terminal critical point”, Phys. Rev. E, 62:6 (2000), 7828–7830 | DOI

[28] Anishchenko V. S., Vadivasova T. E., Sosnovtseva O. V., “Strange nonchaotic attractors in autonomous and periodically driven systems”, Phys. Rev. E, 54:4 (1996), 3231–3234 | DOI

[29] Pikovsky A. S., Feudel U., “Comment on «Strange nonchaotic attractors in autonomous and periodically driven systems»”, Phys. Rev. E, 56:6 (1997), 7320–7321 | DOI | MR

[30] Mitsui T., Aizawa Y., “Intermittency route to strange nonchaotic attractors in a non-skew-product map”, Phys. Rev. E, 81:4 (2010), 046210, 8 pp. | DOI | MR

[31] Jalnine A. Yu., Kuznetsov S. P., “Strange nonchaotic self-oscillator”, Europhys. Lett., 115:3 (2016), 30004, 5 pp. | DOI

[32] Goldstein H., Poole Ch. P. Jr., Safko J. L., Classical Mechanics, 3rd ed., Addison-Wesley, Boston, Mass., 2001, 680 pp. | MR

[33] Pikovsky A., Politi A., Lyapunov exponents: A tool to explore complex dynamics, Cambridge Univ. Press, Cambridge, 2016, 295 pp. | Zbl

[34] Ott E., Chaos in dynamical systems, Cambridge Univ. Press, Cambridge, 1993, 295 pp. | MR | Zbl

[35] Jalnine A. Yu., “Statistical properties of the intermittent transition to chaos in the quasi-periodically forced system”, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelin. Dinam., 14:5 (2006), 30–43 (Russian)

[36] Ramaswamy R., “Synchronization of strange nonchaotic attractors”, Phys. Rev. E, 56:6 (1997), 7294–7296 | DOI | MR

[37] Zhou C., Chen T., “Robust communication via synchronization between nonchaotic strange attractors”, EPL (Europhysics Letters), 38:4 (1997), 261–265 | DOI | MR