Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2017_13_2_a6, author = {A. A. Burov and A. D. Guerman and I. I. Kosenko and V. I. Nikonov}, title = {On the gravity of dumbbell-like bodies represented by a pair of intersecting balls}, journal = {Russian journal of nonlinear dynamics}, pages = {243--256}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2017_13_2_a6/} }
TY - JOUR AU - A. A. Burov AU - A. D. Guerman AU - I. I. Kosenko AU - V. I. Nikonov TI - On the gravity of dumbbell-like bodies represented by a pair of intersecting balls JO - Russian journal of nonlinear dynamics PY - 2017 SP - 243 EP - 256 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2017_13_2_a6/ LA - ru ID - ND_2017_13_2_a6 ER -
%0 Journal Article %A A. A. Burov %A A. D. Guerman %A I. I. Kosenko %A V. I. Nikonov %T On the gravity of dumbbell-like bodies represented by a pair of intersecting balls %J Russian journal of nonlinear dynamics %D 2017 %P 243-256 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2017_13_2_a6/ %G ru %F ND_2017_13_2_a6
A. A. Burov; A. D. Guerman; I. I. Kosenko; V. I. Nikonov. On the gravity of dumbbell-like bodies represented by a pair of intersecting balls. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 2, pp. 243-256. http://geodesic.mathdoc.fr/item/ND_2017_13_2_a6/
[1] Beletsky V. V., Rodnikov A. V., “Coplanar libration points in the generalized restricted circular problem of three bodies”, Nelin. Dinam., 7:3 (2011), 569–576 (Russian)
[2] Karapetyan A. V., Stability of stationary motions, URSS, Moscow, 1998 (Russian)
[3] Kondratyev B. P., Theory of potential. New methods and problems with solutions, Mir, Moscow, 2007 (Russian)
[4] Levi-Civita T., Ugo A., Compendio di meccanica razionale: Parte 1. Cinematica — principi e statica, Zanichelli, Bologna, 1946, 423 pp. | MR
[5] Beletsky V. V., Rodnikov A. V., “On evolution of libration points similar to Eulerian in the model problem of the binary-asteroids dynamics”, J. Vibroeng., 10:4 (2008), 550–556
[6] Herrera-Succarat E., The full problem of two and three bodies: Application to asteroids and binaries, Univ. of Surrey, Guildford, 2012, 172 pp.
[7] Herrera-Succarat E., Palmer P. L., Roberts M., “Modeling the gravitational potential of a nonspherical asteroid”, J. Guid. Control Dyn., 36:3 (2013), 790–798 | DOI
[8] Robe H. A. G., “A new kind of $3$-body problem”, Celestial Mech., 16:3 (1977), 343–351 | DOI
[9] Routh E. J., A treatise on stability of a given state of motion, McMillan, London, 1877, 108 pp.
[10] Scheeres D., “Relative equilibria in the spherical, finite density $3$-body problem”, J. Nonlinear Sci., 26:5 (2016), 1445–1482 | DOI | MR | Zbl
[11] Seidov Z. F., Gravitational potential energy of simple bodies: The homogeneous bispherical concavo-convex lens, 2000, 3 pp., arXiv: astro-ph/0003233
[12] Seidov Z. F., Gravitational energy of simple bodies: The method of negative density, 2000, 4 pp., arXiv: astro-ph/0003239
[13] Turconi A., Palmer Ph., Roberts M., “Efficient modelling of small bodies gravitational potential for autonomous proximity operations”, Astrodynamics Network AstroNet-II: The Final Conference, Astrophys. Space Sci. Proc., 44, eds. G. Gómez, J. J. Masdemont, Springer, Cham, 2016, 257–272 | DOI
[14] Valeriano L. R., “Parametric stability in Robe’s problem”, Regul. Chaotic Dyn., 21:1 (2016), 126–135 | DOI | MR | Zbl
[15] Wang X., Jiang Y., Gong S., “Analysis of the potential field and equilibrium points of irregular-shaped minor celestial bodies”, Astrophys. Space Sci., 353:1 (2014), 105–121 | DOI
[16] Jiang Y., Baoyin H., Li H., “Collision and annihilation of relative equilibrium points around asteroids with a changing parameter”, Mon. Not. R. Astron. Soc., 452:4 (2015), 3924–3931 | DOI