On the gravity of dumbbell-like bodies represented by a pair of intersecting balls
Russian journal of nonlinear dynamics, Tome 13 (2017) no. 2, pp. 243-256.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the motion of a particle in the gravity field of a homogeneous dumbbell-like body composed of a pair of intersecting balls, whose radii are, in general, different, is studied. Approximation for the Newtonian potential of attraction is obtained. Relative equilibria and their properties are studied under the assumption of uniform rotation of the dumbbells.
Keywords: generalized planar two-bodies problem, asteroid-like systems, gravitating systems with irregular mass distribution, stability of steady motions, bifurcations of steady motions.
@article{ND_2017_13_2_a6,
     author = {A. A. Burov and A. D. Guerman and I. I. Kosenko and V. I. Nikonov},
     title = {On the gravity of dumbbell-like bodies represented by a pair of intersecting balls},
     journal = {Russian journal of nonlinear dynamics},
     pages = {243--256},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2017_13_2_a6/}
}
TY  - JOUR
AU  - A. A. Burov
AU  - A. D. Guerman
AU  - I. I. Kosenko
AU  - V. I. Nikonov
TI  - On the gravity of dumbbell-like bodies represented by a pair of intersecting balls
JO  - Russian journal of nonlinear dynamics
PY  - 2017
SP  - 243
EP  - 256
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2017_13_2_a6/
LA  - ru
ID  - ND_2017_13_2_a6
ER  - 
%0 Journal Article
%A A. A. Burov
%A A. D. Guerman
%A I. I. Kosenko
%A V. I. Nikonov
%T On the gravity of dumbbell-like bodies represented by a pair of intersecting balls
%J Russian journal of nonlinear dynamics
%D 2017
%P 243-256
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2017_13_2_a6/
%G ru
%F ND_2017_13_2_a6
A. A. Burov; A. D. Guerman; I. I. Kosenko; V. I. Nikonov. On the gravity of dumbbell-like bodies represented by a pair of intersecting balls. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 2, pp. 243-256. http://geodesic.mathdoc.fr/item/ND_2017_13_2_a6/

[1] Beletsky V. V., Rodnikov A. V., “Coplanar libration points in the generalized restricted circular problem of three bodies”, Nelin. Dinam., 7:3 (2011), 569–576 (Russian)

[2] Karapetyan A. V., Stability of stationary motions, URSS, Moscow, 1998 (Russian)

[3] Kondratyev B. P., Theory of potential. New methods and problems with solutions, Mir, Moscow, 2007 (Russian)

[4] Levi-Civita T., Ugo A., Compendio di meccanica razionale: Parte 1. Cinematica — principi e statica, Zanichelli, Bologna, 1946, 423 pp. | MR

[5] Beletsky V. V., Rodnikov A. V., “On evolution of libration points similar to Eulerian in the model problem of the binary-asteroids dynamics”, J. Vibroeng., 10:4 (2008), 550–556

[6] Herrera-Succarat E., The full problem of two and three bodies: Application to asteroids and binaries, Univ. of Surrey, Guildford, 2012, 172 pp.

[7] Herrera-Succarat E., Palmer P. L., Roberts M., “Modeling the gravitational potential of a nonspherical asteroid”, J. Guid. Control Dyn., 36:3 (2013), 790–798 | DOI

[8] Robe H. A. G., “A new kind of $3$-body problem”, Celestial Mech., 16:3 (1977), 343–351 | DOI

[9] Routh E. J., A treatise on stability of a given state of motion, McMillan, London, 1877, 108 pp.

[10] Scheeres D., “Relative equilibria in the spherical, finite density $3$-body problem”, J. Nonlinear Sci., 26:5 (2016), 1445–1482 | DOI | MR | Zbl

[11] Seidov Z. F., Gravitational potential energy of simple bodies: The homogeneous bispherical concavo-convex lens, 2000, 3 pp., arXiv: astro-ph/0003233

[12] Seidov Z. F., Gravitational energy of simple bodies: The method of negative density, 2000, 4 pp., arXiv: astro-ph/0003239

[13] Turconi A., Palmer Ph., Roberts M., “Efficient modelling of small bodies gravitational potential for autonomous proximity operations”, Astrodynamics Network AstroNet-II: The Final Conference, Astrophys. Space Sci. Proc., 44, eds. G. Gómez, J. J. Masdemont, Springer, Cham, 2016, 257–272 | DOI

[14] Valeriano L. R., “Parametric stability in Robe’s problem”, Regul. Chaotic Dyn., 21:1 (2016), 126–135 | DOI | MR | Zbl

[15] Wang X., Jiang Y., Gong S., “Analysis of the potential field and equilibrium points of irregular-shaped minor celestial bodies”, Astrophys. Space Sci., 353:1 (2014), 105–121 | DOI

[16] Jiang Y., Baoyin H., Li H., “Collision and annihilation of relative equilibrium points around asteroids with a changing parameter”, Mon. Not. R. Astron. Soc., 452:4 (2015), 3924–3931 | DOI