On stability of motion of the Maxwell pendulum
Russian journal of nonlinear dynamics, Tome 13 (2017) no. 2, pp. 207-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the stability of motion of the Maxwell pendulum in a uniform gravity field [1, 2]. The threads on which the axis and the disk of the pendulum have been suspended are assumed to be weightless and inextensible, and the characteristic linear size of the disk is assumed to be small compared to the lengths of threads. In the unperturbed motion the angle the threads make with the vertical is zero, and the disk moves along the vertical and rotates around its horizontal axis. The nonlinear problem of stability of this motion is solved with respect to small deviations of the threads from the vertical. By means of canonical transformations and the Poincaré section surface method, the problem is reduced to the study of stability of the fixed point of the area-preserving mapping of the plane into itself. In the space of dimensionless parameters of the problem, regions of stability and instability are found.
Keywords: stability, map, canonical transformations.
@article{ND_2017_13_2_a4,
     author = {A. P. Markeev},
     title = {On stability of motion of the {Maxwell} pendulum},
     journal = {Russian journal of nonlinear dynamics},
     pages = {207--226},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2017_13_2_a4/}
}
TY  - JOUR
AU  - A. P. Markeev
TI  - On stability of motion of the Maxwell pendulum
JO  - Russian journal of nonlinear dynamics
PY  - 2017
SP  - 207
EP  - 226
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2017_13_2_a4/
LA  - ru
ID  - ND_2017_13_2_a4
ER  - 
%0 Journal Article
%A A. P. Markeev
%T On stability of motion of the Maxwell pendulum
%J Russian journal of nonlinear dynamics
%D 2017
%P 207-226
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2017_13_2_a4/
%G ru
%F ND_2017_13_2_a4
A. P. Markeev. On stability of motion of the Maxwell pendulum. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 2, pp. 207-226. http://geodesic.mathdoc.fr/item/ND_2017_13_2_a4/

[1] Khaykin S. E., Physical foundation of mechanics, Nauka, Moscow, 1971 (Russian)

[2] Sivukhin D. V., A course of general physics, v. 1, Mechanics, Fizmatlit, Moscow, 2006 (Russian)

[3] Appell P., Traité de Mécanique rationnelle, v. 2, Dynamique des systèmes. Mécanique analytique, 6th ed., Gauthier-Villars, Paris, 1953, 384 pp.

[4] Markeyev A. P., “An algorithm for normalizing Hamiltonian systems in the problem of the orbital stability of periodic motions”, J. Appl. Math. Mech., 66:6 (2002), 889–896 | DOI | MR | Zbl

[5] Poincaré H., Les méthodes nouvelles de la mécanique céleste, v. 3, Invariants intégraux. Solutions périodiques du deuxième genre. Solutions doublement asymptotiques, Gauthier-Villars, Paris, 1899 | MR

[6] Whittaker E. T., A treatise on the analytical dynamics of particles and rigid bodies, Cambridge Univ. Press, Cambridge, 1988, 456 pp. | MR | Zbl

[7] Moser J. K., Lectures on Hamiltonian systems, Mem. Amer. Math. Soc., 81, AMS, Providence, R.I., 1968, 60 pp. | MR

[8] Markeyev A. P., “A method for analytically representing area-preserving mappings”, J. Appl. Math. Mech., 78:5 (2014), 435–444 | DOI | MR

[9] Markeev A. P., “On the fixed points stability for the area-preserving maps”, Nelin. Dinam., 11:3 (2015), 503–545 (Russian) | Zbl

[10] Markeyev A. P., “he oscillations of a particle suspended on an ideal thread”, J. Appl. Math. Mech., 60:2 (1996), 233–242 | DOI | MR | MR | Zbl

[11] Malkin I. G., Theory of stability of motion, Univ. of Michigan, Ann Arbor, Mich., 1958, 456 pp. | MR