Solution – gas and solution – crystal oscillatory phase transitions in the drops of aqueous solutions with one crystallizable component
Russian journal of nonlinear dynamics, Tome 13 (2017) no. 2, pp. 195-206.

Voir la notice de l'article provenant de la source Math-Net.Ru

Long-term aperiodic oscillatory phase transitions of gas – solution and solution – crystal have been reproduced experimentally in the ensemble of aqueous droplets with a dissolved component. The new observations can simplify the dynamic model of phase transitions of the oscillating mode considered before. It reduces the number of independent variables and the need to consider the formation of metastable phases. The model establishes a relation between the speed and direction of solvent flow in the gas and the vapor pressure in the drop neighborhood, temperature of the drop, the rate of change in temperature, the rate of change in volumes of the drop and the crystal. The analysis has revealed that the presence of crystalline phases in the system causes at least two singularities (bifurcations) of the chemical potential of the volatile component with respect to its quantities in the drop.
Mots-clés : phase transitions, oscillation, condensation
Keywords: evaporation, crystallization, drop of solution.
@article{ND_2017_13_2_a3,
     author = {V. B. Fedoseev},
     title = {Solution {\textendash} gas and solution {\textendash} crystal oscillatory phase transitions in the drops of aqueous solutions with one crystallizable component},
     journal = {Russian journal of nonlinear dynamics},
     pages = {195--206},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2017_13_2_a3/}
}
TY  - JOUR
AU  - V. B. Fedoseev
TI  - Solution – gas and solution – crystal oscillatory phase transitions in the drops of aqueous solutions with one crystallizable component
JO  - Russian journal of nonlinear dynamics
PY  - 2017
SP  - 195
EP  - 206
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2017_13_2_a3/
LA  - ru
ID  - ND_2017_13_2_a3
ER  - 
%0 Journal Article
%A V. B. Fedoseev
%T Solution – gas and solution – crystal oscillatory phase transitions in the drops of aqueous solutions with one crystallizable component
%J Russian journal of nonlinear dynamics
%D 2017
%P 195-206
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2017_13_2_a3/
%G ru
%F ND_2017_13_2_a3
V. B. Fedoseev. Solution – gas and solution – crystal oscillatory phase transitions in the drops of aqueous solutions with one crystallizable component. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 2, pp. 195-206. http://geodesic.mathdoc.fr/item/ND_2017_13_2_a3/

[1] Fedoseev V. B., Maksimov M. V., “Solution – crystal – solution oscillatory phase transitions in the KCl – NaCl – H$_2$O system”, JETP Lett., 101:6 (2015), 390–393 | DOI | MR

[2] Vanag V. K., “Waves and patterns in reaction – diffusion systems. Belousov – Zhabotinsky reaction in water-in-oil microemulsions”, Physics–Uspekhi, 47:9 (2004), 923–941 | DOI

[3] Liesegang R. E., “Über einige Eigenschaften von Gallerten”, Naturwiss. Wochenschr., 11:30 (1896), 353–362

[4] Il'in A. M., Markov B. A., “A nonlinear diffusion equation and Liesegang rings”, Dokl. Math., 84:2 (2011), 730–733 | DOI | MR | Zbl

[5] Tanaka T., Hara S., “Thermodynamic evaluation of nano-particle binary alloy phase diagrams”, Z. Metallkd., 92:11 (2001), 1236–1241

[6] Eichhammer Y., Heyns M., Moelans N., “Calculation of phase equilibria for an alloy nanoparticle in contact with a solid nanowire”, Calphad, 35:2 (2011), 173–182 | DOI

[7] Fedoseev V. B., Shishulin A. V., Titaeva E. K., Fedoseeva E. N., “On the possibility of the formation of a NACL – KCL solid-solution crystal from an aqueous solution at room temperature in small-volume systems”, Phys. Solid State, 58:10 (2016), 2095–2100 | DOI

[8] Fedoseev V. B., Fedoseeva E. N., “States of a supersaturated solution in limited-size systems”, JETP Lett., 97:7 (2013), 408–412 | DOI

[9] Frank-Kamenetskii D. A., Diffusion and heat transfer in chemical kinetics, 2nd enl. and rev. ed., Plenum Press, New York, 1969, xxvi, 574 pp.

[10] Handbook of solubility, v. 1, Binary systems: Part 2, eds. V. B. Kogan, V. M. Fridman, V. V. Kafarov, Akad. Nauk, Moscow, 1961, 108 pp. (Russian)

[11] Shchukin E. D., Pertsov A. V., Amelina E. A., Zelenev A. S., Colloid and surface chemistry, Studies in Interface Science, 12, Elsevier, Amsterdam, 2001, 747 pp.

[12] Reid R., Prausnitz J. M., Sherwood T. K., The properties of gases and liquids, 3rd ed., McGraw-Hill, New York, 1977, 741 pp.

[13] Kuchma A. E., Shchekin A. K., Kuni F. M., “Dynamics of variations in size and composition of supercritical droplet at binary condensation”, Colloid J., 73:2 (2011), 224–233 | DOI

[14] Mattila T., Kulmala M., Vesala T., “On the condensational growth of a multicomponent droplet”, J. Aerosol Sci., 28:4 (1997), 553–564 | DOI

[15] Martyukova D. S., Kuchma A. E., Shchekin A. K., “Dynamics of variations in size and composition of a binary droplet in a mixture of two condensing vapors and a passive gas under arbitrary initial conditions”, Colloid J., 75:5 (2013), 571–578 | DOI | DOI

[16] Saverchenko V. I., Fisenko S. P., Khodyko Yu. A., “Kinetics of picoliter binary droplet evaporation on a substrate at reduced pressure”, Colloid J., 77:1 (2015), 71–76 | DOI | DOI

[17] Tarasevich Yu. Yu., Isakova O. P., Kondukhov V. V., Savitskaya A. V., “Effect of evaporation conditions on the spatial redistribution of components in an evaporating liquid drop on a horizontal solid substrate”, Tech. Phys., 55:5 (2010), 636–644 | DOI

[18] Engberg R. F., Wegener M., Kenig E. Y., “The influence of Marangoni convection on fluid dynamics of oscillating single rising droplets”, Chem. Eng. Sci., 117 (2014), 114–124 | DOI