Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups
Russian journal of nonlinear dynamics, Tome 13 (2017) no. 1, pp. 129-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with two systems from sub-Riemannian geometry. One of them is defined by a Carnot group with three generatrices and growth vector (3, 6, 14), the other is defined by two generatrices and growth vector (2, 3, 5, 8). Using a Poincaré map, the nonintegrability of the above systems in the general case is shown. In addition, particular cases are presented in which there exist additional first integrals.
Keywords: sub-Riemannian geometry, first integrals.
Mots-clés : Carnot group, Poincaré map
@article{ND_2017_13_1_a8,
     author = {I. A. Bizyaev and A. V. Borisov and A. A. Kilin and I. S. Mamaev},
     title = {Integrability and nonintegrability of {sub-Riemannian} geodesic flows on {Carnot} groups},
     journal = {Russian journal of nonlinear dynamics},
     pages = {129--146},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2017_13_1_a8/}
}
TY  - JOUR
AU  - I. A. Bizyaev
AU  - A. V. Borisov
AU  - A. A. Kilin
AU  - I. S. Mamaev
TI  - Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups
JO  - Russian journal of nonlinear dynamics
PY  - 2017
SP  - 129
EP  - 146
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2017_13_1_a8/
LA  - ru
ID  - ND_2017_13_1_a8
ER  - 
%0 Journal Article
%A I. A. Bizyaev
%A A. V. Borisov
%A A. A. Kilin
%A I. S. Mamaev
%T Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups
%J Russian journal of nonlinear dynamics
%D 2017
%P 129-146
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2017_13_1_a8/
%G ru
%F ND_2017_13_1_a8
I. A. Bizyaev; A. V. Borisov; A. A. Kilin; I. S. Mamaev. Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 1, pp. 129-146. http://geodesic.mathdoc.fr/item/ND_2017_13_1_a8/

[1] Ardentov A. A., Sachkov Yu. L., “Solution to Euler’s elastic problem”, Autom. Remote Control, 70:4 (2009), 633–643 | DOI | MR | Zbl

[2] Dovbysh S. A., Borisov A. V., “Nonintegrability of the classical homogeneous three-component Yang – Mills field”, Numerical modelling in the problems of mechanics, MGU, Moscow, 1991, 157–166 (Russian)

[3] Ziglin S. L., “Bifurcation of solutions and the nonexistence of first integrals in Hamiltonian mechanics: 2”, Funct. Anal. Appl., 17:1 (1983), 6–17 | DOI | MR | Zbl

[4] Kozlov V. V., General theory of vortices, Encyclopaedia Math. Sci., 67, Springer, Berlin, 2003, 184 pp. | DOI | MR | MR | Zbl

[5] Nikolaevskii E. S., Shur L. N., “Nonintegrability of the classical Yang – Mills fields”, JETP Lett., 36:5 (1982), 218–221

[6] Nikolaevskii E. S., Shchur L. N., “The nonintegrability of the classical Yang – Mills equations”, JETP, 58:1 (1983), 1–7 | MR

[7] Sachkov Yu. L., “An exponential mapping in the generalized Dido problem”, Sb. Math., 194:9–10 (2003), 1331–1359 | DOI | DOI | MR | Zbl

[8] Agrachev A. A., Sachkov Yu. L., Control theory from the geometric viewpoint, Encyclopaedia Math. Sci., 87, Springer, Berlin, 2004, 412 pp. | DOI | MR | Zbl

[9] Agrachev A. A., Sachkov Yu. L., “An intrinsic approach to the control of rolling bodies: 1”, Proc. of the 38th IEEE Conf. on Decision and Control (Phoenix, Ariz., Dec 1999), v. 1, 431–435

[10] Borisov A. V., Mamaev I. S., Treschev D. V., “Rolling of a rigid body without slipping and spinning: Kinematics and dynamics”, J. Appl. Nonlinear Dyn., 2:2 (2013), 161–173 | DOI | Zbl

[11] Carnegie A., Percival I. C., “Regular and chaotic motion in some quartic potentials”, J. Phys. A, 17:4 (1984), 801–813 | DOI | MR | Zbl

[12] Dahlqvist P., Russberg G., “Existence of stable orbits in the $x^2 y^2$ potential”, Phys. Rev. Lett., 65:23 (1990), 2837–2838 | DOI | MR | Zbl

[13] Jurdjevic V., Geometric control theory, Cambridge Stud. Adv. Math., 52, Cambridge Univ. Press, Cambridge, 1997, 512 pp. | MR | Zbl

[14] Marcinek R., Pollak E., Zakrzewski J., “Yang – Mills classical mechanics revisited”, Phys. Lett. B, 327:1–2 (1994), 67–69 | DOI | MR

[15] Martens C. C., Waterland R. L., Reinhardt W. P., “Classical, semiclassical, and quantum mechanics of a globally chaotic system: Integrability in the adiabatic approximation”, J. Chem. Phys., 90:4 (1989), 2328–2337 | DOI | MR

[16] Matinyan S. G., Savvidy G. K., Ter-Arutyunyan-Savvidy N. G., “Classical Yang – Mills mechanics: Nonlinear color oscillations”, JETP, 53:3 (1981), 421–425 | MR

[17] Montgomery R., A tour of subriemannian geometries, their geodesics and applications, Math. Surveys Monogr., 91, AMS, Providence, R.I., 2006, 259 pp. | DOI | MR

[18] Montgomery R., Shapiro M., Stolin A., “A nonintegrable sub-Riemannian geodesic flow on a Carnot group”, J. Dyn. Control Syst., 3:4 (1997), 519–530 | MR | Zbl

[19] Myasnichenko O., “Nilpotent $(3, 6)$ sub-Riemannian problem”, J. Dyn. Control Syst., 8:4 (2002), 573–597 | DOI | MR | Zbl

[20] Ott E., Grebogi C., Yorke J. A., “Controlling chaos”, Phys. Rev. Lett., 64:11 (1990), 1196–1199 | DOI | MR | Zbl

[21] Taimanov I. A., “Integrable geodesic flows of nonholonomic metrics”, J. Dyn. Control Syst., 3:1 (1997), 129–147 | DOI | MR | Zbl

[22] Sachkov Yu., Sub-Riemannian geodesics on the free Carnot group with the growth vector $(2,\,3,\,5,\,8)$, 2014, 13 pp., arXiv: 1404.7752 [math.OC]

[23] Savvidy G. K., “The Yang – Mills classical mechanics as a Kolmogorov K-system”, Phys. Lett. B, 130:5 (1983), 303–307 | DOI | MR

[24] Sohos G., Bountis T., Polymilis H., Is the Hamiltonian $H=(\dot x^ 2+\dot y^ 2+ x^ 2 y^ 2)/2$ completely chaotic?, Nuovo Cimento B (11), 104:3 (1989), 339–352 | DOI | MR

[25] Vershik A. M., Gershkovich V. Ya., “Nonholonomic dynamical systems, geometry of distributions and variational problems”, Dynamical systems: 7. Integrable systems nonholonomic dynamical systems, Encyclopaedia Math. Sci., 16, eds. V. I. Arnol'd, S. P. Novikov, Springer, Berlin, 1994, 1–81

[26] Jung Ch., Scholz H.-J., “Chaotic scattering off the magnetic dipole”, J. Phys. A, 21:10 (1988), 2301–2311 | DOI | MR | Zbl

[27] Grammaticos B., Dorizzi B., Ramani A., “Integrability of Hamiltonians with third- and fourth-degree polynomial potentials”, J. Math. Phys., 24:9 (1983), 2289–2295 | DOI | MR | Zbl

[28] Maciejewski A. J., Przybylska M., “Darboux points and integrability of Hamiltonian systems with homogeneous polynomial potential”, J. Math. Phys., 46:6 (2005), 062901, 33 pp. | DOI | MR | Zbl

[29] Kozlov V. V., “Canonical Gibbs distribution and thermodynamics of mechanical systems with a finite number of degrees of freedom”, Regul. Chaotic Dyn., 4:2 (1999), 44–54 | DOI | MR | Zbl

[30] Kozlov V. V., Symmetries, topology and resonances in Hamiltonian mechanics, Ergeb. Math. Grenzgeb. (3), 31, Springer, Berlin, 1996, 378 pp. | MR

[31] Kozlov V. V., “Polynomial conservation laws for the Lorentz and the Boltzmann – Gibbs gases”, Russian Math. Surveys, 71:2 (2016), 253–290 | DOI | DOI | MR | Zbl

[32] Yoshida H., “A criterion for the non-existence of an additional integral in Hamiltonian systems with a homogeneous potential”, Phys. D, 29:1 (1987), 128–142 | DOI | MR | Zbl

[33] Dorizzi B., Grammaticos B., Ramani A., Winternitz P., “Integrable Hamiltonian systems with velocity-dependent potentials”, J. Math. Phys., 26:12 (1985), 3070–3079 | DOI | MR

[34] Ablowitz M. J., Ramani A., Segur H., “A connection between nonlinear evolution equations and ordinary differential of $P$-type: 1”, J. Math. Phys., 21:4 (1980), 715–721 | DOI | MR | Zbl

[35] Kamchatnov A. M., Sokolov V. V., “Nonlinear waves in two-component Bose – Einstein condensates: Manakov system and Kowalevski equations”, Phys. Rev. A, 91:4 (2015), 043621, 11 pp. | DOI | MR

[36] Marikhin V. G., Sokolov V. V., “Separation of variables on a non-hyperelliptic curve”, Regul. Chaotic Dyn., 10:1 (2005), 59–70 | DOI | MR | Zbl

[37] Jaroensutasinee K., Rowlands G., “Stability analysis of $x = + or - y$ periodic orbits in a $1/2 (Q-xy)^2$ potential”, J. Phys. A, 27:4 (1994), 1163–1178 | DOI | MR | Zbl

[38] Hermes H., “Nilpotent approximations of control systems and distributions”, SIAM J. Control Optim., 24:4 (1986), 731–736 | DOI | MR | Zbl