The contact interaction of two Timoshenko beams
Russian journal of nonlinear dynamics, Tome 13 (2017) no. 1, pp. 41-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model of contact interaction of two geometrically nonlinear S.P. Timoshenko beams is obtained. The transverse alternating load acts on one of the beams. The infinitedimensional problem is reduced to a finite-dimensional one by using the second-order finite difference method. The Cauchy problem obtained is solved by the Runge – Kutta method of 4th order. The contact pressure is determined by B.Ya. Kantor’s method. The analysis of the results is carried out by methods of nonlinear dynamics and qualitative theory of differential equations. The scenario of transition of vibrations of the structure from harmonic to chaotic ones is studied. It is found that the shape of the beams’ vibrations becomes asymmetric in the event of the first bifurcation, but at the same time, there comes a phase synchronization of chaotic vibrations. Maps of the dynamic behavior for both beams are constructed.
Keywords: contact interaction, Timoshenko beam, finite difference method, nonlinear dynamics, phase synchronization.
@article{ND_2017_13_1_a3,
     author = {O. A. Saltykova and V. A. Krys'ko},
     title = {The contact interaction of two {Timoshenko} beams},
     journal = {Russian journal of nonlinear dynamics},
     pages = {41--53},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2017_13_1_a3/}
}
TY  - JOUR
AU  - O. A. Saltykova
AU  - V. A. Krys'ko
TI  - The contact interaction of two Timoshenko beams
JO  - Russian journal of nonlinear dynamics
PY  - 2017
SP  - 41
EP  - 53
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2017_13_1_a3/
LA  - ru
ID  - ND_2017_13_1_a3
ER  - 
%0 Journal Article
%A O. A. Saltykova
%A V. A. Krys'ko
%T The contact interaction of two Timoshenko beams
%J Russian journal of nonlinear dynamics
%D 2017
%P 41-53
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2017_13_1_a3/
%G ru
%F ND_2017_13_1_a3
O. A. Saltykova; V. A. Krys'ko. The contact interaction of two Timoshenko beams. Russian journal of nonlinear dynamics, Tome 13 (2017) no. 1, pp. 41-53. http://geodesic.mathdoc.fr/item/ND_2017_13_1_a3/

[1] Volmir A. S., Nonlinear dynamics of plates and shells, Nauka, Moscow, 1972 (Russian) | MR

[2] Grigoluk E. I., Selezov I. T., Non-classical theory of vibrations of rods, plates and shells, Itogi Nauki Tekh. Ser. Mekh. Deform. Tverd. Tela, 5, VINITI, Moscow, 1973 (Russian)

[3] Erofeev V. I., Kazhaev V. V., Lisenkova E. E., Semerikova N. P., “Dynamic behaviour of Bernoulli – Euler, Rayleigh and Timoshenko beam models, lying on an elastic foundation (comparative analysis)”, Vestn. Nighegorodsk. Univ., 2011, no. 5(3), 274–278 (Russian)

[4] Cantor B. Ja., Bogatyrenko T. L., “A method for solving contact problems of nonlinear shell theory”, Dokl. Akad. Nauk Ukr. SSR, Ser. A, 1986, no. 1, 18–21 (Russian) | MR | Zbl

[5] Krysko V. A., Zhigalov M. V., Saltykova O. A., “Nonlinear dynamics of beams of Euler – Bernoulli and Timoshenko type”, Izv. Vyssh. Uchebn. Zaved. Mashinostr., 2008, no. 6, 7–27 (Russian)

[6] Krysko V. A., Zhigalov M. V., Saltykova O. A., “Features of composite chaotic fluctuations of Euler – Bernulli beams and those of Timoshenko type subject to edge conditions”, Izv. Vyssh. Uchebn. Zaved. Stroit., 2008, no. 9, 4–10 (Russian) | MR

[7] Desyatova A. S., Krys’ko V. A., Saltykova O. A., Zhigalov M. V., “Dissipative dynamics of geometrically nonlinear Bernoulli – Euler beams”, Mech. Solids, 43:6 (2008), 948–956 | DOI

[8] Krysko V. A., Zhigalov M. V., Soldatov V. V., Podturkin M. N., “On the choice of the type of wavelet in the study of nonlinear oscillations of beams considering transverse shear”, Vestn. SGTU, 3:1(40) (2009), 14–22 (Russian)

[9] Krysko A. V., Zhigalov M. V., Mitskevich S. A., Zagniboroda N. A., Dobriyan V. V., Kutepov I. E., Krysko V. A., “Nonlinear dynamics of vibration micromechanical gyroscopes: 2. Calculation of the resonator in the form of a beam with the initial abnormality regarding geometrical non-linearity”, Vestn. SGTU, 3:1(67) (2012), 7–15 (Russian)

[10] Kulikov G. M., Plotnikova S. V., Kazakov D. V., “Contact problem for the elastic plate and rigid body: 1. Geometrically linear formulation”, Vestn. TGTU, 10:1B (2004), 180–194 (Russian)

[11] Mitskevich S. A., Zaharova A. A., Krysko A. V., “Steady vibrations beam MEMS resonator in a viscous medium under the action of a local shock”, Computer science and information technology, eds. T. V. Semenova, A. G. Fedorova, Nauka, Saratov, 2016, 277–280 (Russian)

[12] Osipenko M. A., “On the accuracy of the Euler – Bernoulli model in contact problems for beams”, Vestn. IzhGTU, 2013, no. 2, 55–64 (Russian)

[13] Saltykova O. A., Papkova I. V., Kashubina A. A., Sinichkina A. O., Vetsel S. S., Krysko V. A., “Transition scenarios of the flexible Euler – Bernoulli beams from harmonic to chaotic vibrations under arbitrary transversal loads”, Vestn. SGTU, 2:1(79) (2015), 9–17 (Russian)

[14] Sinichkina A. O., Krylova E. Yu., Mitskevich S. A., Krysko V. A., “Dynamics of elastic beams under impact loading, accounting for white noise”, Probl. Prochn. Plastichn., 78:3 (2016), 280–288 (Russian)

[15] Tymoshenko S. P., Stability rods, plates and shells: Selected works, Fizmatgiz, Moscow, 1971 (Russian) | MR

[16] Sheremet'ev M. P., Pelekh B. L., “Construction of the refined theory of plates”, Inzh. Zhurn., 4:3 (1964), 34–41 (Russian)

[17] Yakovleva T. V., Krylova E. Yu., Bazhenov V. G., Krysko V. A., “Complicated fluctuations and contacting the plate, supported by a beam with a gap between them, under extreme loading conditions”, Izv. Vyssh. Uchebn. Zaved. Stroit., 2016, no. 3, 13–23 (Russian)

[18] Yakovleva T. V., Bazhenov V. G., Krysko V. A., Krylova E. Yu., “Contact interaction plates, reinforced by ribs, with gaps under the influence of white noise”, Vestn. PNIPU. Mekh., 2015, no. 4, 259–272 (Russian)

[19] Krysko A. V., Awrejcewicz J., Saltykova O. A., Vetsel S. S., Krysko V. A., “Nonlinear dynamics and contact interaction of the structures composed of beam-beam and beam-closed cylindrical shell members”, Chaos Solitons Fractals, 91 (2016), 622–638 | DOI | MR

[20] Krysko V. A., Zhigalov M., Soldatov V., Mitskevitch S., Kuznetsova E. S., Shagivaleev K. F., Awrejcewicz J., Mrozowski J., “Investigation of nonlinear dissipative chaotic dynamics of plates and shells”, Shell structures: Theory and applications: Proc. of the 9th SSTA Conf. (Jurata, Poland, 14–16 Oct 2009), eds. W. Pietraszkiewicz, I. Kreja, CRC, London, 2009, 175–178 | DOI

[21] Levinson M., “A new rectangular beam theory”, J. Sound Vibration, 74:1 (1981), 81–87 | DOI | Zbl

[22] Manoach E., Warminski J., Mitura A., Samborski S., “Dynamics of a composite Timoshenko beam with delamination”, Mech. Res. Commun., 46 (2012), 47–53 | DOI

[23] Reddy J. N., “A simple higher-order theory for laminated composite plates”, J. Appl. Mech., 51:4 (1984), 745–752 | DOI | Zbl

[24] Timoshenko S. P., “On the correction for shear of differential equation for transverse vibration of prismatic bar”, Philos. Mag., 41:36 (1921), 744–746 | DOI

[25] Xu R., Wu Y., “Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko's beam theory”, Int. J. Mech. Sci., 49:10 (2007), 1139–1155 | DOI