Dynamics of the Chaplygin sleigh on a cylinder
Russian journal of nonlinear dynamics, Tome 12 (2016) no. 4, pp. 675-687.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the motion of the Chaplygin sleigh on the surface of a circular cylinder. In the case of inertial motion, the problem reduces to the study of the dynamical system on a (two-dimensional) torus and to the classification of singular points. Particular cases in which the system admits an invariant measure are found. In the case of a balanced and dynamically symmetric Chaplygin sleigh moving in a gravitational field it is shown that on the average the system has no drift along the vertical.
Keywords: Chaplygin sleigh, invariant measure, nonholonomic mechanics.
@article{ND_2016_12_4_a9,
     author = {I. A. Bizyaev and A. V. Borisov and I. S. Mamaev},
     title = {Dynamics of the {Chaplygin} sleigh on a cylinder},
     journal = {Russian journal of nonlinear dynamics},
     pages = {675--687},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2016_12_4_a9/}
}
TY  - JOUR
AU  - I. A. Bizyaev
AU  - A. V. Borisov
AU  - I. S. Mamaev
TI  - Dynamics of the Chaplygin sleigh on a cylinder
JO  - Russian journal of nonlinear dynamics
PY  - 2016
SP  - 675
EP  - 687
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2016_12_4_a9/
LA  - ru
ID  - ND_2016_12_4_a9
ER  - 
%0 Journal Article
%A I. A. Bizyaev
%A A. V. Borisov
%A I. S. Mamaev
%T Dynamics of the Chaplygin sleigh on a cylinder
%J Russian journal of nonlinear dynamics
%D 2016
%P 675-687
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2016_12_4_a9/
%G ru
%F ND_2016_12_4_a9
I. A. Bizyaev; A. V. Borisov; I. S. Mamaev. Dynamics of the Chaplygin sleigh on a cylinder. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 4, pp. 675-687. http://geodesic.mathdoc.fr/item/ND_2016_12_4_a9/

[1] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Geometrisation of Chaplygin’s reducing multiplier theorem”, Nonlinearity, 28:7 (2015), 2307–2318 | DOI | MR | Zbl

[2] Borisov A. V., Kilin A. A., Mamaev I. S., “How to control Chaplygin's sphere using rotors”, Regul. Chaotic Dyn., 17:3–4 (2012), 258–272 | DOI | MR | Zbl

[3] Borisov A. V., Kilin A. A., Mamaev I. S., “The problem of drift and recurrence for the rolling Chaplygin ball”, Regul. Chaotic Dyn., 18:6 (2013), 832–859 | DOI | MR | Zbl

[4] Borisov A. V., Mamaev I. S., Bizyaev I. A., “The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere”, Regul. Chaotic Dyn., 18:3 (2013), 277–328 | DOI | MR | Zbl

[5] von Brill A., Vorlesungen zur Einführung in die Mechanik raumerfüllender Massen, Teubner, Leipzig, 1909, 236 pp. | Zbl

[6] Carathéodory C., “Der Schlitten”, Z. Angew. Math. Mech., 13:2 (1933), 71–76 | DOI

[7] Caughey T. K., “Hula-hoop: an example of heteroparametric excitation”, Am. J. Phys., 28:2 (1960), 104–109 | DOI | MR | Zbl

[8] Fedorov Yu. N., García-Naranjo L. C., Marrero J. C., “Unimodularity and preservation of volumes in nonholonomic mechanics”, J. Nonlinear Sci., 25:1 (2015), 203–246 | DOI | MR | Zbl

[9] Hamel G., “Die Lagrange – Eulerschen Gleichungen der Mechanik”, Z. Math. u. Phys., 50 (1904), 1–57 | Zbl

[10] Kakehashi Y., Izawa T., Shirai T., Nakanishi Y., Okada K., Inaba M., “Achievement of hula hooping by robots through deriving principle structure towards flexible spinal motion”, J. Robot. Mechatron., 24:3 (2012), 540–546 | DOI

[11] Kozlov V. V., “Several problems on dynamical systems and mechanics”, Nonlinearity, 21:9 (2008), 149–155 | DOI | MR

[12] Kozlov V. V., “The Euler – Jacobi – Lie integrability theorem”, Regul. Chaotic Dyn., 4:18 (2013), 329–343 | DOI | MR | Zbl

[13] Noohi E., Mahdavi S. S., Baghani A., Ahmadabadi M. N., “Wheel-based climbing robot: Modeling and control”, Advanced Robotics, 24:8–9 (2010), 1313–1343 | DOI

[14] Appelroth H. H., “Sur les cas particuliers les plus simples du mouvement d'un gyroscope pesant asymmétrique de M-me Kowalewsky”, Mat. Sb., 27:3 (1910), 262–334 (Russian)

[15] Appelroth H. H., “Sur les cas particuliers les plus simples du mouvement d'un gyroscope pesant asymmétrique de M-me Kowalewsky (2-me article)”, Mat. Sb., 27:4 (1911), 477–559 (Russian)

[16] Bilimovitch A. D., “La pendule nonholonome”, Mat. Sb., 29:2 (1914), 234–240 (Russian)

[17] Bobylev D., “Kugel, die ein Gyroskop einschliesst und auf einer Horizontalebene rollt, ohne dabei zu gleiten”, Mat. Sb., 16:3 (1892), 544–581 (Russian)

[18] Borisov A. V., Kilin A. A., Mamaev I. S., “On a nonholonomic dynamical problem”, Math. Notes, 79:5–6 (2006), 734–740 | DOI | DOI | MR | Zbl

[19] Borisov A. V., Mamaev I. S., “The dynamics of a Chaplygin sleigh”, J. Appl. Math. Mech., 73:2 (2009), 156–161 | DOI | MR | Zbl

[20] Borisov A. V., Mamaev I. S., Tsyganov A. V., “Nonholonomic dynamics and Poisson geometry”, Russian Math. Surveys, 69:3 (2014), 481–538 | DOI | DOI | MR | Zbl

[21] Goriatchev D. N., “Sur le mouvement d'un solide pesant autour d'un point fixe dans le cas $A=B=4C$”, Mat. Sb., 21:3 (1900), 431–438 (Russian)

[22] Ifraimov S. V., Kuleshov A. S., “On moving Chaplygin sleigh on a convex surface”, Autom. Remote Control, 74:8 (2013), 1297–1306 | DOI | MR | Zbl

[23] Kozlov V. V., “On the existence of an integral invariant of a smooth dynamic system”, J. Appl. Math. Mech., 51:4 (1987), 420–426 | DOI | MR | Zbl

[24] Mushtari Kh. M., “Über das Abrollen eines schweren starren Rotationskörpers auf einer unbeweglichen horizontalen Ebene”, Mat. Sb., 39:1–2 (1932), 105–126 (Russian) | Zbl

[25] Nekrassov P. A., “Étude analytique d'un cas du mouvement d'un corps pesant autour d'un point fixe”, Mat. Sb., 18:2 (1896), 161–274 (Russian)

[26] Nekrassov P. A., “Zur Frage von der Bewegung eines schweren starren Körpers um einen festen Punkt”, Mat. Sb., 16:3 (1892), 508–517 (Russian) | Zbl

[27] Oreshkina L. N., “Some generalizations of the Chaplygin sleigh problem”, Mekh. Tverd. Tela, 1986, no. 19, 34–39 (Russian) | MR | Zbl

[28] Sloudsky Th., “Note relative au problème de plusieurs corps”, Mat. Sb., 9:3 (1879), 536–545 (Russian)

[29] Chaplygin S. A., “On the theory of motion of nonholonomic systems. The reducing-multiplier theorem”, Regul. Chaotic Dyn., 13:4 (2008), 369–376 | DOI | MR | Zbl

[30] Chaplygin S. A., “On a ball's rolling on a horizontal plane”, Regul. Chaotic Dyn., 7:2 (2002), 131–148 | DOI | MR | Zbl