Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2016_12_4_a8, author = {E. V. Vetchanin and A. A. Kilin}, title = {Control of the motion of an unbalanced heavy ellipsoid in an ideal fluid using rotors}, journal = {Russian journal of nonlinear dynamics}, pages = {663--674}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2016_12_4_a8/} }
TY - JOUR AU - E. V. Vetchanin AU - A. A. Kilin TI - Control of the motion of an unbalanced heavy ellipsoid in an ideal fluid using rotors JO - Russian journal of nonlinear dynamics PY - 2016 SP - 663 EP - 674 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2016_12_4_a8/ LA - ru ID - ND_2016_12_4_a8 ER -
%0 Journal Article %A E. V. Vetchanin %A A. A. Kilin %T Control of the motion of an unbalanced heavy ellipsoid in an ideal fluid using rotors %J Russian journal of nonlinear dynamics %D 2016 %P 663-674 %V 12 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2016_12_4_a8/ %G ru %F ND_2016_12_4_a8
E. V. Vetchanin; A. A. Kilin. Control of the motion of an unbalanced heavy ellipsoid in an ideal fluid using rotors. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 4, pp. 663-674. http://geodesic.mathdoc.fr/item/ND_2016_12_4_a8/
[1] Kozlov V. V., Ramodanov S. M., “The motion of a variable body in an ideal fluid”, J. Appl. Math. Mech., 65:4 (2001), 579–587 | DOI | MR | Zbl
[2] Kozlov V. V., Ramodanov S. M., “On the motion of a body with a rigid hull and changing geometry of masses in an ideal fluid”, Dokl. Phys., 47:2 (2002), 132–135 | DOI | MR
[3] Kozlov V. V., Onishchenko D. A., “The motion in a perfect fluid of a body containing a moving point mass”, J. Appl. Math. Mech., 67:4 (2003), 553–564 | DOI | MR | Zbl
[4] Kirchhoff G., Vorlesungen über mathematische Physik, v. 1, Mechanik, Teubner, Leipzig, 1876, 466 pp.
[5] Kilin A. A., Vetchanin E. V., “The control of the motion through an ideal fluid of a rigid body by means of two moving masses”, Nelin. Dinam., 11:4 (2015), 633–645 (Russian)
[6] Vetchanin E. V., Kilin A. A., “Free and controlled motion of a body with moving internal mass though a fluid in the presence of circulation around the body”, Dokl. Phys., 61:1 (2016), 32–36 | DOI | DOI | MR
[7] Vetchanin E. V., Kilin A. A., “Controlled motion of a rigid body with internal mechanisms in an ideal incompressible fluid”, Proc. Steklov Inst. Math., 295 (2016), 302–332 | DOI
[8] Vetchanin E. V., Kilin A. A., “Control of body motion in an ideal fluid using the internal mass and the rotor in the presence of circulation around the body”, J. Dyn. Control Syst., 2017 (to appear)
[9] Borisov A. V., Kilin A. A., Mamaev I. S., “How to control Chaplygin’s sphere using rotors”, Regul. Chaotic Dyn., 17:3–4 (2012), 258–272 | DOI | MR | Zbl
[10] Borisov A. V., Kilin A. A., Mamaev I. S., “How to control the Chaplygin ball using rotors: 2”, Regul. Chaotic Dyn., 18:1–2 (2013), 144–158 | DOI | MR | Zbl
[11] Ivanova T. B., Pivovarova E. N., “Comments on the paper by A. V. Borisov, A. A. Kilin, I. S. Mamaev «How to control the Chaplygin ball using rotors: 2»”, Regul. Chaotic Dyn., 19:1 (2014), 140–143 | DOI | MR | Zbl
[12] Morinaga A., Svinin M., Yamamoto M., “On the iterative steering of a rolling robot actuated by internal rotors”, Analysis, Modelling, Optimization, and Numerical Techniques: Proc. of the Internat. Conf. on Applied Mathematics and Informatics (ICAMI'2013, San Andrés Island, Nov 2013), Springer Proc. Math. Stat., 121, eds. G. O. Tost, O. Vasilieva, Springer, Cham, 2015, 205–218 | DOI | MR | Zbl
[13] Rashevsky P. K., “Any two points of a totally nonholonomic space may be connected by an admissible line”, Uch. Zap. Ped. Inst. im. Liebknechta, Ser. Phys. Math., 3:2 (1938), 83–94 (Russian)
[14] Coddington E., Levinson N., Theory of ordinary differential equations, McGraw-Hill, New York, 1955, 429 pp. | MR | Zbl
[15] Guirao J. L. G., Vera J. A., “Equilibria, stability and Hamiltonian Hopf bifurcation of a gyrostat in an incompressible ideal fluid”, Phys. D, 241:19 (2012), 1648–1654 | DOI | MR | Zbl
[16] Woolsey C. A., Leonard N. E., “Stabilizing underwater vehicle motion using internal rotors”, Automatica J. IFAC, 38:12 (2002), 2053–2062 | DOI | MR | Zbl
[17] Crouch P. E., “Spacecraft attitude control and stabilization: Applications of geometric control theory to rigid body models”, IEEE Trans. on Automatic Control, 29:4 (1984), 321–331 | DOI | Zbl
[18] Borisov A. V., Mamaev I. S., Dynamics of a rigid body: Hamiltonian methods, integrability, chaos, 2nd ed., R Dynamics, Institute of Computer Science, Izhevsk, 2005 (Russian) | MR
[19] Borisov A. V., Vetchanin E. V., Kilin A. A., “The control of the motion of a three-axial ellipsoid through a fluid by means of rotors”, Math. Notes, 2017
[20] Vetchanin E. V., Kilin A. A., Mamaev I. S., “Control of the motion of a helical body in a fluid using rotors”, Regul. Chaotic Dyn., 21:7–8 (2016), 874–884
[21] Borisov A. V., Kuznetsov S. P., Mamaev I. S., Tenenev V. A., “Describing the motion of a body with an elliptical cross section in a viscous uncompressible fluid by model equations reconstructed from data processing”, Tech. Phys. Lett., 42:9 (2016), 886–890 | DOI
[22] Tenenev V. A., Vetchanin E. V., Ilaletdinov L. F., “Chaotic dynamics in the problem of the fall of a screw-shaped body in a fluid”, Nelin. Dinam., 12:1 (2016), 99–120 (Russian) | Zbl
[23] Borisov A. V., Kozlov V. V., Mamaev I. S., “Asymptotic stability and associated problems of dynamics of falling rigid body”, Regul. Chaotic Dyn., 12:5 (2007), 531–565 | DOI | MR | Zbl
[24] Borisov A. V., Mamaev I. S., “On the motion of a heavy rigid body in an ideal fluid with circulation”, Chaos, 16:1 (2006), 013118, 7 pp. | DOI | MR | Zbl
[25] Vetchanin E. V., Mamaev I. S., Tenenev V. A., “The self-propulsion of a body with moving internal masses in a viscous fluid”, Regul. Chaotic Dyn., 18:1 (2013), 100–117 | DOI | MR | Zbl
[26] Vetchanin E. V., Tenenev V. A., “Motion control simulating in a viscous liquid of a body with variable geometry of weights”, Computer Research and Modeling, 3:4 (2011), 371–381 (Russian)
[27] Ramodanov S. M., Tenenev V. A., “Motion of a body with variable distribution of mass in a boundless viscous liquid”, Nelin. Dinam., 7:3 (2011), 635–647 (Russian) | MR
[28] Childress S., Spagnolie S. E., Tokieda T., “A bug on a raft: Recoil locomotion in a viscous fluid”, J. Fluid Mech., 669 (2011), 527–556 | DOI | MR | Zbl
[29] Ehlers K. M., Koiller J., “Micro-swimming without flagella: Propulsion by internal structures”, Regul. Chaotic Dyn., 16:6 (2011), 623–652 | DOI | MR | Zbl
[30] Lighthill M. J., “On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers”, Comm. Pure Appl. Math., 5 (1952), 109–118 | DOI | MR | Zbl
[31] Koiller J., Ehlers K., Montgomery R., “Problems and progress in microswimming”, J. Nonlinear Sci., 6:6 (1996), 507–541 | DOI | MR | Zbl
[32] Ramodanov S. M., Tenenev V. A., Treschev D. V., “Self-propulsion of a body with rigid surface and variable coefficient of lift in a perfect fluid”, Regul. Chaotic Dyn., 17:6 (2012), 547–558 | DOI | MR | MR | Zbl
[33] Tallapragada P., Kelly S. D., “Self-propulsion of free solid bodies with internal rotors via localized singular vortex shedding in planar ideal fluids”, Eur. Phys. J. Spec. Top, 224:17 (2015), 3185–3197 | DOI
[34] Rust I. C., Asada H. H., “The eyeball ROV: Design and control of a spherical underwater vehicle steered by an internal eccentric mass”, Proc. of the IEEE Internat. Conf. on Robotics and Automation (ICRA, 9–13 May, 2011), 5855–5862
[35] Quillen A. C., Askari H., Kelley D. H., Friedmann T., Oakes P. W., “A coin vibrational motor swimming at low Reynolds number”, Regul. Chaotic Dyn., 21:7–8 (2016), 902–917