Transitory shift in pendular type equations
Russian journal of nonlinear dynamics, Tome 12 (2016) no. 4, pp. 577-589.

Voir la notice de l'article provenant de la source Math-Net.Ru

The two-dimensional nonautonomous equations of pendular type are considered: the Josephson equation and the equation of oscillations of a body. It is supposed that these equations are transitory, i.e., nonautonomous only on a finite time interval. The problem of dependence of the mode on the transitory shift is solved. For a conservative case the measure of transport from oscillations to rotations is established.
Keywords: transitory system, separatrix, attractors.
Mots-clés : limit cycles
@article{ND_2016_12_4_a2,
     author = {A. D. Morozov and K. E. Morozov},
     title = {Transitory shift in pendular type equations},
     journal = {Russian journal of nonlinear dynamics},
     pages = {577--589},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2016_12_4_a2/}
}
TY  - JOUR
AU  - A. D. Morozov
AU  - K. E. Morozov
TI  - Transitory shift in pendular type equations
JO  - Russian journal of nonlinear dynamics
PY  - 2016
SP  - 577
EP  - 589
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2016_12_4_a2/
LA  - ru
ID  - ND_2016_12_4_a2
ER  - 
%0 Journal Article
%A A. D. Morozov
%A K. E. Morozov
%T Transitory shift in pendular type equations
%J Russian journal of nonlinear dynamics
%D 2016
%P 577-589
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2016_12_4_a2/
%G ru
%F ND_2016_12_4_a2
A. D. Morozov; K. E. Morozov. Transitory shift in pendular type equations. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 4, pp. 577-589. http://geodesic.mathdoc.fr/item/ND_2016_12_4_a2/

[1] Mosovsky B. A., Meiss J. D., “Transport in transitory dynamical systems”, SIAM J. Appl. Dyn. Syst., 10:1 (2011), 35–65 | DOI | MR | Zbl

[2] Morozov A. D., Morozov K. E., “Transitory shift in the flutter problem”, Nelin. Dinam., 11:3 (2015), 447–457 (Russian) | MR | Zbl

[3] Mosovsky B. A., Meiss J. D., “Transport in transitory three-dimensional Liouville flows”, SIAM J. Appl. Dyn. Syst., 11:4 (2012), 1785–1816 | DOI | MR | Zbl

[4] Belykh V. N., Pedersen N. F., Sørensen O. H., “Shunted-Josephson-junction model: 1. The autonomous case”, Phys. Rev. B, 16:11 (1977), 4853–4859 | DOI

[5] Sanders J. A., Cushman R., “Limit cycles in the Josephson equation”, SIAM J. Math. Anal., 17:3 (1986), 495–511 | DOI | MR | Zbl

[6] V. Shakhgildyati, L. Belyustina (red.), Phase synchronization systems, Radio i Svyaz, Moscow, 1982 (Russian)

[7] Leech C. M., “Limit cycle stability of aerodynamically inducced yaw oscillations”, Int. J. Mech. Sci., 21:9 (1979), 517–525 | DOI | Zbl

[8] Morozov A. D., Quasi-conservative systems: Cycles, resonances and chaos, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 30, World Sci., Singapore, 1998, 340 pp. | DOI | MR | Zbl

[9] Morozov A. D., “Limit cycles and chaos in equations of the pendulum type”, J. Appl. Math. Mech., 53:5 (1989), 565–572 | DOI | MR | Zbl