Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2016_12_4_a2, author = {A. D. Morozov and K. E. Morozov}, title = {Transitory shift in pendular type equations}, journal = {Russian journal of nonlinear dynamics}, pages = {577--589}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2016_12_4_a2/} }
A. D. Morozov; K. E. Morozov. Transitory shift in pendular type equations. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 4, pp. 577-589. http://geodesic.mathdoc.fr/item/ND_2016_12_4_a2/
[1] Mosovsky B. A., Meiss J. D., “Transport in transitory dynamical systems”, SIAM J. Appl. Dyn. Syst., 10:1 (2011), 35–65 | DOI | MR | Zbl
[2] Morozov A. D., Morozov K. E., “Transitory shift in the flutter problem”, Nelin. Dinam., 11:3 (2015), 447–457 (Russian) | MR | Zbl
[3] Mosovsky B. A., Meiss J. D., “Transport in transitory three-dimensional Liouville flows”, SIAM J. Appl. Dyn. Syst., 11:4 (2012), 1785–1816 | DOI | MR | Zbl
[4] Belykh V. N., Pedersen N. F., Sørensen O. H., “Shunted-Josephson-junction model: 1. The autonomous case”, Phys. Rev. B, 16:11 (1977), 4853–4859 | DOI
[5] Sanders J. A., Cushman R., “Limit cycles in the Josephson equation”, SIAM J. Math. Anal., 17:3 (1986), 495–511 | DOI | MR | Zbl
[6] V. Shakhgildyati, L. Belyustina (red.), Phase synchronization systems, Radio i Svyaz, Moscow, 1982 (Russian)
[7] Leech C. M., “Limit cycle stability of aerodynamically inducced yaw oscillations”, Int. J. Mech. Sci., 21:9 (1979), 517–525 | DOI | Zbl
[8] Morozov A. D., Quasi-conservative systems: Cycles, resonances and chaos, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 30, World Sci., Singapore, 1998, 340 pp. | DOI | MR | Zbl
[9] Morozov A. D., “Limit cycles and chaos in equations of the pendulum type”, J. Appl. Math. Mech., 53:5 (1989), 565–572 | DOI | MR | Zbl