Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2016_12_3_a6, author = {A. V. Borisov and I. S. Mamaev and I. A. Bizyaev}, title = {Historical and critical review of the development of nonholonomic mechanics: the classical period}, journal = {Russian journal of nonlinear dynamics}, pages = {385--411}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2016_12_3_a6/} }
TY - JOUR AU - A. V. Borisov AU - I. S. Mamaev AU - I. A. Bizyaev TI - Historical and critical review of the development of nonholonomic mechanics: the classical period JO - Russian journal of nonlinear dynamics PY - 2016 SP - 385 EP - 411 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ND_2016_12_3_a6/ LA - ru ID - ND_2016_12_3_a6 ER -
%0 Journal Article %A A. V. Borisov %A I. S. Mamaev %A I. A. Bizyaev %T Historical and critical review of the development of nonholonomic mechanics: the classical period %J Russian journal of nonlinear dynamics %D 2016 %P 385-411 %V 12 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ND_2016_12_3_a6/ %G ru %F ND_2016_12_3_a6
A. V. Borisov; I. S. Mamaev; I. A. Bizyaev. Historical and critical review of the development of nonholonomic mechanics: the classical period. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 3, pp. 385-411. http://geodesic.mathdoc.fr/item/ND_2016_12_3_a6/
[1] Albouy A., “There is a projective dynamics”, Eur. Math. Soc. Newsl., 2013, no. 89, 37–43 | MR | Zbl
[2] Appell P., Traité de mécanique rationelle, v. 2, Dynamique des systèmes. Mécanique analytique, Gauthier-Villars, Paris, 1896, iv+538 pp.
[3] Appell P., “Exemple de mouvement d’un assujetti, a une exprimée par une relation non linéaire entre les composantes de la vitesse”, Rendiconti del circolo matematico di Palermo, 32 (1911), 48–50 | DOI | Zbl
[4] Béghin H., “Sur les conditions d'application des équations de Lagrange à un système non holonome”, Bull. Soc. Math. France, 57 (1929), 118–124 | MR
[5] Bizyaev I. A., Borisov A. V., Kazakov A. O., “Dynamics of the Suslov problem in a gravitational field: Reversal and strange attractors”, Regul. Chaotic Dyn., 20:5 (2015), 605–626 | DOI | MR | Zbl
[6] Bizyaev I. A., Borisov A. V., Mamaev I. S., “The Hojman construction and hamiltonization of nonholonomic systems”, SIGMA Symmetry Integrability Geom. Methods Appl., 12 (2016), 012, 19 pp. | MR | Zbl
[7] Blackall C. J., “On volume integral invariants of non-holonomic dynamical systems”, Amer. J. Math., 63 (1941), 155–168 | DOI | MR
[8] Bloch A., Nonholonomic mechanics and control, Springer, New York, 2003, xx+483 pp. | MR | Zbl
[9] Borisov A. V., Kazakov A. O., Sataev I. R., “The reversal and chaotic attractor in the nonholonomic model of Chaplygin's top”, Regul. Chaotic Dyn., 19:6 (2014), 718–733 | DOI | MR | Zbl
[10] Borisov A. V., Kilin A. A., Mamaev I. S., “On the Hadamard – Hamel problem and the dynamics of wheeled vehicles”, Regul. Chaotic Dyn., 20:6 (2015), 752–766 | DOI | MR | Zbl
[11] Borisov A. V., Mamaev I. S., “The rolling motion of a rigid body on a plane and a sphere: Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200 | DOI | MR | Zbl
[12] Borisov A. V., Mamaev I. S., “On the history of the development of the nonholonomic dynamics”, Regul. Chaotic Dyn., 7:1 (2002), 43–47 | DOI | MR | Zbl
[13] Borisov A. V., Mamaev I. S., “Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490 | DOI | MR | Zbl
[14] Borisov A. V., Mamaev I. S., “Symmetries and reduction in nonholonomic mechanics”, Regul. Chaotic Dyn., 20:5 (2015), 553–604 | DOI | MR | Zbl
[15] Borisov A. V., Mamaev I. S., Bizyaev I. A., “The hierarchy of dynamics of a rigid body rolling without slipping and spinning on a plane and a sphere”, Regul. Chaotic Dyn., 18:3 (2013), 277–328 | DOI | MR | Zbl
[16] Borisov A. V., Mamaev I. S., Bizyaev I. A., “The Jacobi integral in nonholonomic mechanics”, Regul. Chaotic Dyn., 20:3 (2015), 383–400 | DOI | MR | Zbl
[17] Borisov A. V., Mamaev I. S., Kilin A. A., “Dynamics of rolling disk”, Regul. Chaotic Dyn., 8:2 (2003), 201–212 | DOI | MR | Zbl
[18] Borisov A. V., Mamaev I. S., Kilin A. A., Bizyaev I. A., “Qualitative analysis of the dynamics of a wheeled vehicle”, Regul. Chaotic Dyn., 20:6 (2015), 739–751 | DOI | MR | Zbl
[19] Bottema O., “On the small vibrations of nonholonomic systems”, Indag. Math., 11 (1949), 296–298 | MR | Zbl
[20] Bottema O., “Die Bewegung eines einfachen Wagenmodells”, Z. Angew. Math. Mech., 44:12 (1964), 585–593 | DOI | Zbl
[21] Bourlet C., “Étude théorique sur la bicyclette: 1”, Bull. Soc. Math. France, 27 (1899), 47–67 | DOI | MR | Zbl
[22] Boussinesq J., “Aperçu sur la théorie de la bicyclette”, J. Math. Pure Appl., 5 (1899), 117–135 | Zbl
[23] Boussinesq J., “Complément à une étude récente concernant la théorie de la bicyclette: influence, sur l’équilibre, des mouvements latéraux spontanés du cavalier”, J. Math. Pure Appl., 5 (1899), 217–232 | Zbl
[24] Bravo-Doddoli A., García-Naranjo L. C., “The dynamics of an articulated $n$-trailer vehicle”, Regul. Chaotic Dyn., 20:5 (2015), 497–517 | DOI | MR | Zbl
[25] Brill A., Vorlesungen zur Einführung in die Mechanik raumerfüllender Massen, Teubner, Leipzig, 1909, 236 pp. | Zbl
[26] Capon R. S., “Hamilton's principle in relation to nonholonomic mechanical systems”, Quart. J. Mech. Appl. Math., 5:4 (1952), 472–480 | DOI | MR | Zbl
[27] Carathéodory C., “Der Schlitten”, Z. Angew. Math. Mech., 13:2 (1933), 71–76 | DOI
[28] Carvallo E., Théorie du mouvement du monocycle et de la bicyclette, Gauthier-Villars, Paris, 1899, 193 pp.
[29] Chow W. L., “Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung”, Math. Ann., 117 (1940/1941), 98–105 | DOI | MR
[30] Crescini E., “Sur moto di una sfera che rotola su di un plano fisso”, Rendiconti Accad. dei Lincei, 5 (1889), 204–209
[31] Dautheville S., “Sur les systèmes non holonomes”, Bull. Soc. Math. France, 37 (1909), 120–132 | DOI | MR | Zbl
[32] Delassus E., “Sur la réalisation matérielle des liaisons”, C. R. Acad. Sci. Paris, 152 (1911), 1739–1743 | Zbl
[33] Duistermaat J. J., Chaplygin's sphere, 2004, arXiv: math/0409019 [math.DS]
[34] Earnshaw S., Dynamics, or An elementary treatise on motion, 3rd ed., Deighton, Cambridge, 1844, 396 pp.
[35] Eden R. J., “The Hamiltonian dynamics of non-holonomic systems”, Proc. Roy. Soc. London. Ser. A, 205:1083 (1951), 564–583 | DOI | MR | Zbl
[36] Ehlers K., Koiller J., Montgomery R., Rios P. M., “Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin hamiltonization”, The breadth of symplectic and Poisson geometry: Festschrift in honor of Alan Weinstein, Progr. Math., 232, eds. J. E. Marsden, T. S. Ratiu, Birkhäuser, Boston, Mass., 2005, 75–120 | DOI | Zbl
[37] Essén H., “On the geometry of nonholonomic dynamics”, Trans. ASME J. Appl. Mech., 61:3 (1994), 689–694 | DOI | MR | Zbl
[38] Ferrers N. M., “Extension of Lagrange's equations”, Quart. J. Pure Appl. Math., 12:45 (1872), 1–5
[39] Frobenius G., “Über das Pfaffsche Problem”, J. Reine Angew. Math., 1877:82 (1877), 230–315 | MR
[40] Gibbs J. W., “On the fundamental formulae of dynamics”, Amer. J. Math., 2:1 (1879), 49–64 | DOI | MR | Zbl
[41] Hadamard J., “Sur les mouvements de roulement”, Mémoires de la Société des sciences physiques et naturelles de Bordeaux, sér. 4, 5 (1895), 397–417
[42] Hamel G., “Die Lagrange-Eulerschen Gleichungen der Mechanik”, Z. Math. u. Phys., 50 (1904), 1–57 | Zbl
[43] Hamel G., Theoretische Mechanik: Eine einheitliche Einführung in die gesamte Mechanik, 2nd ed., Springer, Berlin, 1978, 796 pp. | MR | Zbl
[44] Hawkins Th., “Frobenius, Cartan, and the problem of Pfaff”, Arch. Hist. Exact Sci., 59:4 (2005), 381–436 | DOI | MR | Zbl
[45] Hertz H., Gesammelte Werke, v. 3, Die Prinzipien der Mechanik, Barth, Leipzig, 1894, 312 pp. | Zbl
[46] Holm D. D., Geometric mechanics: P. 1: Dynamics and symmetry, 2nd ed., Imperial College Press, London, 2011, xxiv+441 pp. | MR
[47] Isénoff I., “Sur les équations générales du mouvement des systèmes matériels non holonomes”, J. Math. Pures Appl., sér. 8, 3 (1920), 245–264
[48] Koiller J., “Reduction of some classical non-holonomic systems with symmetry”, Arch. Rational Mech. Anal., 118:2 (1992), 113–148 | DOI | MR | Zbl
[49] Kooijman J. D. G., Meijaard J. P., Papadopoulos J. M., Ruina A., Schwab A. L., “A bicycle can be self-stable without gyroscopic or Caster effects (Supplementary material available online)”, Science, 332:6027 (2011), 339–342 | DOI | MR | Zbl
[50] Korteweg D., “Über eine ziemlich verbrietete unrichtige Behandlungswiese eines Problemes der rolleden Bewegung und insbesondere über kleine rollende Schwingungen um eine Gleichgewichtslage”, Nieuw Archief voor Wiskunde, 4 (1899), 130–155
[51] Korteweg D., “Extrait d'une lettre à M. Appel”, Rendiconti del circolo matematico di Palermo, 14 (1900), 7–8 | DOI | Zbl
[52] Kozlov V. V., “The dynamics of systems with servoconstaints: 1”, Regul. Chaotic Dyn., 20:3 (2015), 205–224 | DOI | MR | Zbl
[53] Kozlov V. V., “The dynamics of systems with servoconstaints: 2”, Regul. Chaotic Dyn., 20:4 (2015), 401–427 | DOI | MR | Zbl
[54] Kozlov V. V., “On the theory of integration of the equations of nonholonomic mechanics”, Regul. Chaotic Dyn., 7:2 (2002), 191–176 | DOI | MR
[55] Lagrange J. L., Méchanique analytique, Gabay, Sceaux, 1989, 530 pp.
[56] Laurent-Gengoux C., Pichereau A., Vanhaecke P., Poisson structures, Grundlehren Math. Wiss., 347, Springer, Heidelberg, 2013, 461 pp. | DOI | MR
[57] de León M., “A historical review on nonholonomic mechanics”, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 106:1 (2012), 191–224 | MR | Zbl
[58] Lie S., Theorie der Transformationsgruppen, v. 1, Teubner, Leipzig, 1888, 658 pp.
[59] Lie S., Theorie der Transformationsgruppen, v. 2, Teubner, Leipzig, 1890, 570 pp. | Zbl
[60] Lie S., Theorie der Transformationsgruppen, v. 3, Teubner, Leipzig, 1893, 831 pp. | Zbl
[61] Lindelöf E., “Sur le mouvement d’un corps de révolution roulant sur un plan horizontal”, Acta Societ. Scient. Fennicae, 20:10 (1895), 18 pp.
[62] Llibre J., Ramirez R., Sadovskaia N., “A new approach to the vakonomic mechanics”, Nonlinear Dynam., 78:3 (2014), 2219–2247 | DOI | MR | Zbl
[63] Maggi G., “Di alcune nuove forme delle equazioni della dinamica, applicabili ai sistemi anolonomi”, Atti della R. Acc. nazionale dei Lincei, 5 (1901), 287–292 | Zbl
[64] Maruskin J. M., Bloch A. M., Marsden J. E., Zenkov D. V., “A fiber bundle approach to the transpositional relations in nonholonomic mechanics”, J. Nonlinear Sci., 22:4 (2012), 431–461 | DOI | MR | Zbl
[65] Meijaard J. P., Papadopoulos J. M., Ruina A., Schwab A. L., “Linearized dynamics equations for the balance and steer of a bicycle: A benchmark and review”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463:2084 (2007), 1955–1982 | DOI | MR | Zbl
[66] Molenbrock P., “Over de zuiver rollende beweging van een lichaam over een willekeurig oppervlak”, Nieuw Archief voor Wiskunde, 17 (1890), 130–157
[67] Monforte J. C., Geometric, control and numerical aspects of nonholonomic systems, Lecture Notes in Math., 1793, Springer, Berlin, 2002, 233 pp. | DOI | MR | Zbl
[68] Neumann C., “Über die rollende Bewegung eines Körpers auf einer gegebenen Horizontalebene unter dem Einfluss der Schwere”, Math. Ann., 27:4 (1886), 478–501 | DOI
[69] Neumann C. G., “Beiträge zur analytischen Mechanik: 1”, Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physische Classe, 51 (1899), 371–444 | Zbl
[70] Ohsawa T., Fernandez O. E., Bloch A. M., Zenkov D. V., “Nonholonomic Hamilton – Jacobi theory via Chaplygin hamiltonization”, J. Geom. Phys., 61:8 (2011), 1263–1291 | DOI | MR | Zbl
[71] Pavon M., “Hamilton – Jacobi equations for nonholonomic dynamics”, J. Math. Phys., 46:3 (2005), 032902, 8 pp. | DOI | MR | Zbl
[72] Poincaré H., “Les idées de Hertz sur la mécanique”, Revue Générale des Sciences, 8 (1897), 734–743
[73] Poincaré H., “Sur une forme nouvelle des équations de la Mécanique”, C. R. Acad. Sci. Paris, 132 (1901), 369–371 | Zbl
[74] Posch H. A., Hoover W. G., Vesely F. J., “Canonical dynamics of the Nosé oscillator: Stability, order, and chaos”, Phys. Rev. A (3), 33:6 (1986), 4253–4265 | DOI | MR
[75] Pöschl Th. M. F., “Sur les équations canoniques des systèmes non holonomes”, C. R. Acad. Sci. Paris, 156 (1913), 1829–1831 | Zbl
[76] Quanjel J., “Les équations générales de la mécanique dans le cas des liaisons non-holonomes”, Rendiconti del circolo matematico di Palermo, 22:1 (1906), 263–273 | DOI | Zbl
[77] Routh E. J., The advanced part of a treatise on the dynamics of a system of rigid bodies: Being part II of a treatise on the whole subject, 6th ed., Dover, New York, 1955, 484 pp. | MR
[78] Routh G. R. R., “The motion of a bicycle”, The Messenger of Mathematics, 28 (1899), 151–169
[79] Rumyantsev V. V., Sumbatov A. S., “On the problem of a generalization of the Hamilton – Jacobi method for nonholonomic systems”, Z. Angew. Math. Mech., 58:11 (1978), 477–481 | DOI | MR | Zbl
[80] Schouten G., “Over de rollende beweging van een omwentelingalichaam op een vlak”, Verlangen der Konikl. Akad. van Wet. Amsterdam. Proc., 5 (1899), 1–10
[81] Schouten J. A., “On non-holonomic connexions”, Proc. Amsterdam, 31 (1928), 291–299 | Zbl
[82] Slesser G. M., “Notes on rigid dynamics”, Quart. J. Math., 4 (1861), 65–77
[83] Stückler B., “Über die Differentialgleichungen für die Bewegung eines idealisierten Kraftwagens”, Arch. Appl. Mech., 20:5 (1952), 337–356
[84] Stückler B., “Über die Berechnung der an rollenden Fahrzeugen wirkenden Haftreibungen”, Arch. Appl. Mech., 23:4 (1955), 279–287
[85] Van Dooren R., “Second form of the generalized Hamilton – Jacobi method for nonholonomic dynamical systems”, Z. Angew. Math. Phys., 29:5 (1978), 828–834 | DOI | MR | Zbl
[86] Vierkandt A., “Über gleitende und rollende Bewegung”, Monatsh. Math. Phys., 3:1 (1892), 31–38, 97–116. | DOI | MR
[87] Volterra V., “Sopra una classe di equazioni dinamiche”, Atti della R. Accad. Sci. di Torino, 33 (1898), 471–475
[88] Vrănceanu G., “Les espaces non holonomes et leurs applications mécaniques”, Mém. Sci. Math., 76 (1936), 1–70
[89] Walker G. T., “On a curious dynamical property of celts”, Proc. Cambridge Phil. Soc., 8:5 (1895), 305–306
[90] Weber R. W., “Hamiltonian systems with constraints and their meaning in mechanics”, Arch. Rational Mech. Anal., 91:4 (1986), 309–335 | DOI | MR | Zbl
[91] Whittaker E. T., A treatise on the analytical dynamics of particles and rigid bodies, 4th ed., Cambridge Univ. Press, New York, 1989, 480 pp. | MR
[92] Woronetz P., “Über das Problem der Bewegung von vier Massenpunkten unter dem Einflusse von inneren Kräften”, Math. Ann., 63:3 (1907), 387–412 | DOI | MR | Zbl
[93] Woronetz P., “Über die Bewegung eines starren Körpers, der ohne Gleitung auf einer beliebigen Fläche rollt”, Math. Ann., 70 (1911), 410–453 | DOI | MR | Zbl
[94] Arnol'd V. I., Givental' A. B., “Symplectic geometry”, Dynamical systems IV: Symplectic geometry and its applications, Encyclopaedia Math. Sci., 4, eds. V. I. Arnol'd, S. P. Novikov, Springer, Berlin, 2001, 1–138 | MR
[95] Arnol'd V. I., Kozlov V. V., Neĭshtadt A. I., Mathematical aspects of classical and celestial mechanics, Encyclopaedia Math. Sci., 3, 3rd ed., Springer, Berlin, 2006, 518 pp. | MR | Zbl
[96] Bilimovitch A. D., “La pendule nonholonome”, Mat. Sb., 29:2 (1914), 234–240 (Russian)
[97] Brendelev V. N., “On commutation relations in nonholonomic mechanics”, Mosc. Univ. Mech. Bull., 33:5–6 (1978), 30–35 | MR | Zbl | Zbl
[98] Vagner V. V., “A geometric interpretation of nonholonomic dynamical systems”, Tr. Semin. Vectorn. Tenzorn. Anal., 1941, no. 5, 301–327 (Russian) | MR | Zbl
[99] Vershik A. M., Faddeev L. D., “Differential geometry and Lagrangian mechanics with constraints”, Soviet Phys. Dokl., 17:1 (1972), 34–36 | Zbl
[100] Voronets P. V., “Sur les équations du mouvement pour les systèmes non holonomes”, Mat. Sb., 22:4 (1901), 659–686 (Russian)
[101] Voronets P. V., On the motion of a rigid body rolling without slipping on a fixed surface under the action of fixed forces, Imp. Univ., Kiev, 1909
[102] Zegzhda S. A., Soltakhanov Sh. Kh., Yushkov M. P., The equations of motion of nonholonomic systems and variational principles of mechanics. The new class of control problems, Fizmatlit, Moscow, 2005 (Russian)
[103] Efimov M. I., “On Caplygin's equations of nonholonomic mechanical systems”, Prikl. Mat. Mekh., 17:6 (1953), 748–750 (Russian) | Zbl
[104] Karapetyan A. V., Rumyantsev V. V., Stability of conservative and dissipative systems, Itogi Nauki Tekh. Ser. Obshch. Mekh., 6, VINITI, Moscow, 1983 (Russian)
[105] Cartan É., Lessons on integral invariants, Hermann, Paris, 1922, 229 pp.
[106] Kozlov V. V., “On equilibria of nonholonomic systems”, Mosc. Univ. Mech. Bull., 49:2–3 (1994), 22–29 | MR | Zbl
[107] Kozlov V. V., “Stability of equilibria of nonholonomic systems”, Sov. Math. Dokl., 33 (1986), 654–656 | MR | Zbl
[108] Kozlov V. V., “Realization of nonintegrable constraints in classical mechanics”, Sov. Phys. Dokl., 28 (1983), 735–737 | MR | Zbl
[109] Kozlov V. V., “Euler and mathematical methods in mechanics: On the 300th anniversary of the birth of Leonhard Euler”, Russian Math. Surveys, 62:4 (2007), 639–661 | DOI | DOI | MR | Zbl
[110] Moser J., Zehnder E. J., Notes on dynamical systems, Courant Lect. Notes Math., 12, AMS, Providence, R.I., 2005, viii+256 pp. | DOI | MR | Zbl
[111] Neimark Ju. I., Fufaev N. A., Dynamics of nonholonomic systems, Trans. Math. Monogr., 33, AMS, Providence, R.I., 1972, 518 pp. | MR | Zbl
[112] Rashevsky P. K., “Any two points of a totally nonholonomic space may be connected by an admissible line”, Uch. Zap. Ped. Inst. im. Liebknechta, Ser. Phys. Math., 3:2 (1938), 83–94 (Russian)
[113] Rocard Y., L'instabilité en mécanique: Automobiles, avions, ponts suspendus, Masson, Paris, 1954, 239 pp.
[114] Rumianstev V. V., “On stability of motion of nonholonomic systems”, J. Appl. Math. Mech., 31:2 (1967), 282–293 | DOI | Zbl
[115] Suslov G. K., The foundations of analytical mechanics, v. 1, Imp. Univ., Kiev, 1900 (Russian)
[116] Suslov G. K., Theoretical mechanics, Gostekhizdat, Moscow, 1946 (Russian)
[117] Halmos P. R., “How to write mathematical texts”, Uspekhi Mat. Nauk, 26:5(161) (1971), 243–269 (Russian) | MR
[118] Chaplygin S. A., “O dvizhenii tyazhelogo tela vrascheniya na gorizontalnoi ploskosti”: S. A. Chaplygin., Issledovaniya po dinamike negolonomnykh sistem, Gostekhizdat, Moskva – Leningrad, 1949, 9–27; Чаплыгин С. А., Собр. соч.: Т. 1 / С. А. Чаплыгин, 1948, 57–75, ОГИЗ, Mосква – Ленинград; Chaplygin S. A., “On a motion of a heavy body of revolution on a horizontal plane”, Regul. Chaotic Dyn., 7:2 (2002), 119–130 | DOI | MR | Zbl
[119] Chaplygin S. A., “O katanii shara po gorizontalnoi ploskosti”, Matem. sb., 24 (1903), 139–168 ; Чаплыгин С. А., Собр. соч.: Т. 1 /С. А. Чаплыгин, 1948, 76–101, ОГИЗ, Москва – Ленинград; Chaplygin S. A., “On a ball's rolling on a horizontal plane”, Regul. Chaotic Dyn., 7:2 (2002), 131–148 | DOI | MR | Zbl
[120] Chaplygin S. A., “K teorii dvizheniya negolonomnykh sistem. Teorema o privodyaschem mnozhitele”, Matem. sb., 28:2 (1912), 303–314 ; Чаплыгин С. А., Собр. соч.: Т. 1 /С. А. Чаплыгин, 1948, 15–25, ОГИЗ, Москва – Ленинград; Chaplygin S. A., “On the theory of motion of nonholonomic systems. The reducing-multiplier theorem”, Regul. Chaotic Dyn., 13:4 (2008), 369–376 | DOI | MR | Zbl
[121] Chetaev N. G., “On the Gauss principle”, Izv. Kazan. Fiz. Mat. Obs., 6 (1932/1933), 68–71 (Russian)
[122] Jacobi C. G. J., Vorlesungen über Dynamik, 2nd ed., Reimer, Berlin, 1884, 300 pp. | Zbl