Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ND_2016_12_3_a3, author = {K. S. Sergeev and A. P. Chetverikov}, title = {Metastable states in the {Morse{\textendash}Rayleigh} chain}, journal = {Russian journal of nonlinear dynamics}, pages = {341--353}, publisher = {mathdoc}, volume = {12}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ND_2016_12_3_a3/} }
K. S. Sergeev; A. P. Chetverikov. Metastable states in the Morse–Rayleigh chain. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 3, pp. 341-353. http://geodesic.mathdoc.fr/item/ND_2016_12_3_a3/
[1] Fermi E., Pasta J., Ulam S., Studies of nonlinear problems, Los Alamos Report LA-1940, 1955, 22 pp.
[2] Toda M., Theory of nonlinear lattices, Springer Ser. Solid-State Sci., 20, 2nd ed., Springer, Berlin, 1989 | DOI | MR | MR | Zbl
[3] Landa P. S., Nonlinear oscillations and waves in dynamical systems, Springer, Dordrecht, 1996 | MR
[4] Molecular dynamics of enzymes, eds. Yu. M. Romanovsky, W. Ebeling, MGU, Moscow, 2000 (Russian)
[5] Stochastic dynamics of reacting biomolecules, eds. W. Ebeling, L. Schimansky-Geier, Yu. M. Romanovsky, World Sci., Singapore, 2002, 344 pp.
[6] Nekorkin V. I., Velarde M. G., Synergetic phenomena in active lattices: Patterns, waves, solitons, chaos, Springer Series in Synergetics, Springer, Berlin, 2002, 357 pp. | DOI | MR | Zbl
[7] Ebeling W., Schweitzer F., Tilch B., “Active Brownian particles with energy depots modeling animal mobility”, Biosystems, 49:1 (1999), 17–29 | DOI
[8] Schweitzer F., Ebeling W., Tilch B., “Complex motion of Brownian particles with energy depots”, Phys. Rev. Lett., 80:23 (1998), 5044–5048 | DOI
[9] Erdman U., Ebeling W., Schimansky-Geier L., Schweitzer F., “Brownian particles far from equilibrium”, Eur. Phys. J. B, 15:1 (2000), 105–113 | DOI
[10] Scheweitzer F., Brownian agents and active particles: Collective dynamics in the natural and social sciences, Springer, Berlin, 2003, 421 pp. | MR
[11] Romanczuk P., Erdmann U., “Collective motion of active Brownian particles in one dimension”, Eur. Phys. J. Special Topics, 187:1 (2010), 127–134 | DOI
[12] Romanczuk P., Bär M., Ebeling W., Lindner B., Schimansky-Geier L., “Active Brownian particles: From individual to collective stochastic dynamics”, Eur. Phys. J. Special Topics, 202:1 (2012), 1–162 | DOI
[13] Ebeling W., Erdman U., Dunkel J., Jenssen M., “Nonlinear dynamics and fluctuations of dissipative Toda chains”, J. Stat. Phys., 101:1 (2000), 443–457 | DOI | Zbl
[14] Dunkel J., Ebeling W., Erdman U., “Thermodynamics and transport in an active Morse ring chain”, Eur. Phys. J. B, 24:4 (2001), 511–524 | DOI
[15] Makarov V. A., del Río E., Ebeling W., Velarde M. G., “Dissipative Toda – Rayleigh lattice and its oscillatory modes”, Phys. Rev. E, 64:3 (2001), 036601, 14 pp. | DOI
[16] Ebeling W., Landa P. S., Ushakov V. G., “Self-oscillations in ring Toda chains with negative friction”, Phys. Rev. E, 63:4 (2001), 046601, 8 pp. | DOI | MR
[17] Dunkel J., Ebeling W., Erdmann U., Makarov V. A., “Coherent motions and clusters in a dissipative Morse ring chain: Spatio-temporal complexity”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12:11 (2002), 2359–2377 | DOI | MR | Zbl
[18] Chetverikov A. P., Dunkel J., “Phase behavior and collective excitations of the Morse ring chain”, Eur. Phys. J. B, 35:2 (2003), 239–253 | DOI
[19] del Río E., Makarov V. A., Velarde M. G., Ebeling W., “Mode transitions and wave propagation in a driven-dissipative Toda – Rayleigh ring”, Phys. Rev. E, 67:5 (2003), 056208, 9 pp. | DOI
[20] Dunkel J., Ebeling W., Schmelzer J., Röpke G., “A dissipative one-dimensional collision model with intermediate energy storage”, Phys. D, 185:3–4 (2003), 158–174 | DOI | Zbl
[21] Chetverikov A. P., Ebeling W., Velarde M. G., “Thermodynamic and phase transitions in dissipative and active Morse chain”, Eur. Phys. J. B, 44:4 (2005), 509–519 | DOI
[22] Velarde M. G., Ebeling W., Chetverikov A. P., “On the possibility of electric conduction mediated by dissipative solitons”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15:1 (2005), 245–251 | DOI | MR | Zbl
[23] Chetverikov A. P., Ebeling W., Velarde M. G., “Nonlinear excitations and electric transport in dissipative Morse – Toda lattices”, Eur. Phys. J. B, 51:1 (2006), 87–99 | DOI
[24] Chetverikov A. P., Ebeling W., Velarde M. G., “Dissipative solitons and complex currents in active lattices”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 16:6 (2006), 1613–1632 | DOI | MR | Zbl
[25] Makarov V. A., Velarde M. G., Chetverikov A. P., Ebeling W., “Anharmonicity and its significance to non-Ohmic electric conduction”, Phys. Rev. E, 73:6 (2006), 066626, 12 pp. | DOI
[26] Chetverikov A. P., Ebeling W., Velarde M. G., “Dynamical clustering in chains of atoms with exponential repulsion”, Nucleation theory and applications, eds. J. W. P. Schmelzer, G. Röpke, V. B. Priezzhev, Joint Inst. Nucl. Res., Dubna, 2006, 62–81
[27] Strutt J. W. (3rd Baron Rayleigh), The theory of sound: In 2 vols, Cambridge Univ. Press, Cambridge, 2011
[28] Velarde M. G., “Solitons as dissipative structures”, Int. J. Quantum Chem., 98:2 (2004), 272–280 | DOI
[29] Kerner B. S., Osipov V. V., Autosolitons: A new approach to problems of self-organization and turbulence, Fundamental Theories of Physics, 61, Springer, Dordrecht, 1994 | MR