Metastable states in the Morse–Rayleigh chain
Russian journal of nonlinear dynamics, Tome 12 (2016) no. 3, pp. 341-353

Voir la notice de l'article provenant de la source Math-Net.Ru

The dynamics of a dense ensemble of interacting active Brownian particles is studied. Nonlinear negative friction is described in the sense of Rayleigh; particles are interconnected via Morse potential forces. Such a chain can be considered as an ensemble of interconnected Rayleigh oscillators. The stationary modes (attractors) of chains with periodic boundary conditions looks like cnoidal waves. They are characterized by a uniform distribution of the density maxima of particles in the chain. However, when the chain starts with random initial conditions, a state of nonuniformly distribution of density maxima arises first. This state is metastable and the transition to a stable mode corresponds to a long transition process. Characteristics of metastable states, regularities and probability of their occurrence and their lifetimes are studied by methods of computer simulation.
Mots-clés : active particles, solitons, ensembles.
Keywords: collective dynamics
@article{ND_2016_12_3_a3,
     author = {K. S. Sergeev and A. P. Chetverikov},
     title = {Metastable states in the {Morse{\textendash}Rayleigh} chain},
     journal = {Russian journal of nonlinear dynamics},
     pages = {341--353},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2016_12_3_a3/}
}
TY  - JOUR
AU  - K. S. Sergeev
AU  - A. P. Chetverikov
TI  - Metastable states in the Morse–Rayleigh chain
JO  - Russian journal of nonlinear dynamics
PY  - 2016
SP  - 341
EP  - 353
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2016_12_3_a3/
LA  - ru
ID  - ND_2016_12_3_a3
ER  - 
%0 Journal Article
%A K. S. Sergeev
%A A. P. Chetverikov
%T Metastable states in the Morse–Rayleigh chain
%J Russian journal of nonlinear dynamics
%D 2016
%P 341-353
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2016_12_3_a3/
%G ru
%F ND_2016_12_3_a3
K. S. Sergeev; A. P. Chetverikov. Metastable states in the Morse–Rayleigh chain. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 3, pp. 341-353. http://geodesic.mathdoc.fr/item/ND_2016_12_3_a3/