On the Hadamard–Hamel problem and the dynamics of wheeled vehicles
Russian journal of nonlinear dynamics, Tome 12 (2016) no. 1, pp. 145-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we develop the results obtained by J.Hadamard and G.Hamel concerning the possibility of substituting nonholonomic constraints into the Lagrangian of the system without changing the form of the equations of motion. We formulate the conditions for correctness of such a substitution for a particular case of nonholonomic systems in the simplest and universal form. These conditions are presented in terms of both generalized velocities and quasi-velocities. We also discuss the derivation and reduction of the equations of motion of an arbitrary wheeled vehicle. In particular, we prove the equivalence (up to additional quadratures) of problems of an arbitrary wheeled vehicle and an analogous vehicle whose wheels have been replaced with skates. As examples, we consider the problems of a one-wheeled vehicle and a wheeled vehicle with two rotating wheel pairs.
Keywords: nonholonomic constraint, wheeled vehicle, reduction
Mots-clés : equations of motion.
@article{ND_2016_12_1_a8,
     author = {A. V. Borisov and A. A. Kilin and I. S. Mamaev},
     title = {On the {Hadamard{\textendash}Hamel} problem and the dynamics of wheeled vehicles},
     journal = {Russian journal of nonlinear dynamics},
     pages = {145--163},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ND_2016_12_1_a8/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - A. A. Kilin
AU  - I. S. Mamaev
TI  - On the Hadamard–Hamel problem and the dynamics of wheeled vehicles
JO  - Russian journal of nonlinear dynamics
PY  - 2016
SP  - 145
EP  - 163
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ND_2016_12_1_a8/
LA  - ru
ID  - ND_2016_12_1_a8
ER  - 
%0 Journal Article
%A A. V. Borisov
%A A. A. Kilin
%A I. S. Mamaev
%T On the Hadamard–Hamel problem and the dynamics of wheeled vehicles
%J Russian journal of nonlinear dynamics
%D 2016
%P 145-163
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ND_2016_12_1_a8/
%G ru
%F ND_2016_12_1_a8
A. V. Borisov; A. A. Kilin; I. S. Mamaev. On the Hadamard–Hamel problem and the dynamics of wheeled vehicles. Russian journal of nonlinear dynamics, Tome 12 (2016) no. 1, pp. 145-163. http://geodesic.mathdoc.fr/item/ND_2016_12_1_a8/

[1] Chaplygin S. A., “O katanii shara po gorizontalnoi ploskosti”, Matem. sb., 24 (1903), 139–168 ; Chaplygin S. A., “On a ball's rolling on a horizontal plane”, Regul. Chaotic Dyn., 7:2 (2002), 131–148 | DOI | MR | Zbl

[2] Zakalyukin I. V., “Dynamics of a beam with two sleights via systems of implicit differential equations”, Trudy MAI, 2011, no. 42, 25 pp. (Russian)

[3] Hadamard J., “Sur les mouvements de roulement”, Mémoires de la Société des sciences physiques et naturelles de Bordeaux, sér. 4, 5 (1895), 397–417

[4] Hamel G., “Die Lagrange-Eulerschen Gleichungen der Mechanik”, Z. Math. u. Phys., 50 (1904), 1–57 | Zbl

[5] Borisov A. V., Mamaev I. S., “Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems”, Regul. Chaotic Dyn., 13:5 (2008), 443–490 | DOI | MR | Zbl

[6] Borisov A. V., Mamaev I. S., “Symmetries and reduction in nonholonomic mechanics”, Regul. Chaotic Dyn., 20:5 (2015), 553–604 | DOI | MR | Zbl

[7] Jean F., “The car with $N$ trailers: Characterization of the singular configurations”, ESAIM Control Optim. Calc. Var., 1 (1996), 241–266 | DOI | MR | Zbl

[8] Agrachev A. A., Sachkov Yu. L., Geometricheskaya teoriya upravleniya, Fizmatlit, Moskva, 2005, 392 pp.; Agrachev A. A., Sachkov Yu. L., Control theory from the geometric viewpoint, Encyclopaedia Math. Sci., 87, Springer, Berlin, 2004, xiv+412 pp. | MR | Zbl

[9] Kozlov V. V., “On the realization of constraints in dynamics”, J. Appl. Math. Mech., 56:4 (1992), 594–600 | DOI | MR | Zbl

[10] Vierkandt A., “Über gleitende und rollende Bewegung”, Monatsh. Math. Phys., 3:1 (1892), 31–38, 97–116 | DOI | MR

[11] Appell P., Les mouvements de roulement en dynamique, Hérissey, Évreux, 1899, 72 pp.

[12] Bloch A., Nonholonomic mechanics and control, Springer, New York, 2003, xx+483 pp. | MR | Zbl

[13] Hamel G., Theoretische Mechanik: Eine einheitliche Einführung in die gesamte Mechanik, 2nd ed., Springer, Berlin, 1978, 796 pp. | MR | Zbl

[14] Ehlers K. M., Koiller J., “Rubber rolling: Geometry and dynamics of $2-3-5$ distributions”, Proc. IUTAM Symposium 2006 on Hamiltonian Dynamics, Vortex Structures, Turbulence (Moscow, Russia, 25–30 August 2006), 469–480 | MR

[15] Stückler B., “Über die Differentialgleichungen für die Bewegung eines idealisierten Kraftwagens”, Arch. Appl. Mech., 20:5 (1952), 337–356

[16] Stückler B., “Über die Berechnung der an rollenden Fahrzeugen wirkenden Haftreibungen”, Arch. Appl. Mech., 23:4 (1955), 279–287

[17] Rokar I., Neustoichivost v mekhanike: Avtomobili, samolety, visyachie mosty, Inostrannaya literatura, Moskva, 1959, 288 pp.; Rocard Y., L'instabilité en mécanique: Automobiles, avions, ponts suspendus, Masson, Paris, 1954, 239 pp.

[18] Bottema U., “Dvizhenie prostoi modeli avtomobilya”, Nelineinaya dinamika, 11:3 (2015), 621–632 ; Bottema O., “Die Bewegung eines einfachen Wagenmodells”, Z. Angew. Math. Mech., 44:12 (1964), 585–593 | Zbl | DOI | Zbl

[19] Staicu S., “Dynamics equations of a mobile robot provided with caster wheel”, Nonlinear Dynam., 58:1 (2009), 237–248 | DOI | MR | Zbl

[20] Giergiel J., Żylski W., “Description of motion of a mobile robot by Maggie's equations”, J. Theor. Appl. Mech., 43:3 (2005), 511–521

[21] Bravo-Doddoli A., García-Naranjo L. C., “The dynamics of an articulated $n$-trailer vehicle”, Regul. Chaotic Dyn., 20:5 (2015), 497–517 | DOI | MR | Zbl

[22] Martynenko Yu. G., “The theory of the generalized Magnus effect for non-holonomic mechanical systems”, J. Appl. Math. Mech., 68:6 (2004), 847–855 | DOI | MR | Zbl

[23] Martynenko Yu. G., “Upravlenie dvizheniem mobilnykh kolesnykh robotov”, Fundament. i prikl. matem., 11:8 (2005), 29–80 ; Martynenko Yu. G., “Motion control of mobile wheeled robots”, J. Math. Sci. (N. Y.), 147:2 (2007), 6569–6606 | DOI | MR | Zbl

[24] Kampion G., Basten Zh., D'Andrea-Novel B., “Strukturnye svoistva i klassifikatsiya kinematicheskikh i dinamicheskikh modelei kolesnykh mobilnykh robotov”, Nelineinaya dinamika, 7:4 (2011), 733–769 ; Campion G., Bastin G., d'Andréa-Novel B., “Structural properties and classification of kinematic and dynamic models of wheeled mobile robots”, IEEE Trans. Robot. Autom., 12:1 (1996), 47–62 | DOI | MR

[25] Chaplygin S. A., “K teorii dvizheniya negolonomnykh sistem. Teorema o privodyaschem mnozhitele”, Matem. sb., 28:2 (1912), 303–314 ; Chaplygin S. A., “On the theory of motion of nonholonomic systems. The reducing-multiplier theorem”, Regul. Chaotic Dyn., 13:4 (2008), 369–376 | DOI | MR | Zbl

[26] Chaplygin S. A., “O dvizhenii tyazhelogo tela vrascheniya na gorizontalnoi ploskosti”, Sobr. soch.: T. 1, OGIZ, Moskva – Leningrad, 1948, 57–75; Chaplygin S. A., “On a motion of a heavy body of revolution on a horizontal plane”, Regul. Chaotic Dyn., 7:2 (2002), 119–130 | DOI | MR | Zbl

[27] Krishnaprasad P. S., Tsakiris D. P., “Oscillations, ${\rm SE}(2)$-snakes and motion control: A study of the roller racer”, Dyn. Syst., 16:4 (2001), 347–397 | DOI | MR | Zbl

[28] Vershik A. M., Gershkovich V. Ya., “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Dinamicheskie sistemy — 7, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 16, eds. V. I. Arnold, S. P. Novikov, VINITI, Moskva, 1987, 5–85 ; Vershik A. M., Gershkovich V. Ya., “Nonholonomic dynamical systems, geometry of distributions and variational problems”, Dynamical systems 7: Integrable systems nonholonomic dynamical systems, Encyclopaedia Math. Sci., 16, eds. V. I. Arnol'd, S. P. Novikov, Springer, Berlin, 1994, 1–81 | MR | MR

[29] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Editorial URSS, Moskva, 2002, 416 pp.; Arnol'd V. I., Kozlov V. V., Neĭshtadt A. I., Mathematical aspects of classical and celestial mechanics, Encyclopaedia Math. Sci., 3, 3rd ed., Springer, Berlin, 2006, xiv+518 pp. | MR | Zbl

[30] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Geometrisation of Chaplygin's reducing multiplier theorem”, Nonlinearity, 28:7 (2015), 2307–2318 | DOI | MR | Zbl

[31] Borisov A. V., Mamaev I. S., “The rolling motion of a rigid body on a plane and a sphere: Hierarchy of dynamics”, Regul. Chaotic Dyn., 7:2 (2002), 177–200 | DOI | MR | Zbl

[32] Borisov A. V., Mamaev I. S., “Symmetries and reduction in nonholonomic mechanics”, Regul. Chaotic Dyn., 20:5 (2015), 553–604 | DOI | MR | Zbl

[33] Borisov A. V., Mamaev I. S., Kilin A. A., Bizyaev I. A., “Qualitative analysis of the dynamics of a wheeled vehicle”, Regul. Chaotic Dyn., 20:6 (2015), 739–751 | DOI | MR | Zbl

[34] Borisov A. V., Kilin A. A., Mamaev I. S., “The problem of drift and recurrence for the rolling Chaplygin ball”, Regul. Chaotic Dyn., 18:6 (2013), 832–859 | DOI | MR | Zbl

[35] Bizyaev I. A., Bolsinov A. V., Borisov A. V., Mamaev I. S., “Topology and bifurcations in nonholonomic mechanics”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25:10 (2015), 1530028, 21 pp. | DOI | MR | Zbl

[36] Altafini C., “Some properties of the general $n$-trailer”, Internat. J. Control, 74:4 (2001), 409–424 | DOI | MR | Zbl

[37] Wagner A., Heffel E., Arrieta A. F., Spelsberg-Korspeter G., Hagedorn P., “Analysis of an oscillatory Painlevé – Klein apparatus with a nonholonomic constraint”, Differ. Equ. Dyn. Syst., 21:1–2 (2013), 149–157 | DOI | MR | Zbl

[38] Borisov A. V., Mamaev I. S., “Isomorphism and Hamilton representation of some nonholonomic systems”, Siberian Math. J., 48:1 (2007), 26–36 | DOI | MR | Zbl

[39] Bolsinov A. V., Borisov A. V., Mamaev I. S., “Hamiltonization of nonholonomic systems in the neighborhood of invariant manifolds”, Regul. Chaotic Dyn., 16:5 (2011), 443–464 | DOI | MR | Zbl

[40] Borisov A. V., Kilin A. A., Mamaev I. S., “Hamiltonicity and integrability of the Suslov problem”, Regul. Chaotic Dyn., 16:1–2 (2011), 104–116 | DOI | MR | Zbl

[41] Borisov A. V., Kilin A. A., Mamaev I. S., “Rolling of a homogeneous ball over a dynamically asymmetric sphere”, Regul. Chaotic Dyn., 16:5 (2011), 465–483 | DOI | MR | Zbl

[42] Borisov A. V., Kilin A. A., Mamaev I. S., “New effects in dynamics of rattlebacks”, Dokl. Phys., 51:5 (2006), 272–275 | DOI | MR | Zbl

[43] Borisov A. V., Kilin A. A., Mamaev I. S., “Generalized Chaplygin’s transformation and explicit integration of a system with a spherical support”, Regul. Chaotic Dyn., 17:2 (2012), 170–190 | DOI | MR | Zbl

[44] de León M., “A historical review on nonholonomic mechanics”, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 106:1 (2012), 191–224 | MR | Zbl

[45] Ivanov A. P., “On detachment conditions in the problem on the motion of a rigid body on a rough plane”, Regul. Chaotic Dyn., 13:4 (2008), 355–368 | DOI | MR | Zbl